# Modular forms on Hilbert modular varieties STAGE

Si Ying Lee

April 8 2020

#### Review

## Kummer Congruences

Let  $B_n$  be the n-th Bernoulli number, and m, n be positive even integers with  $m \equiv n \pmod{p^{a-1}(p-1)}$  and  $n \not\equiv 0 \pmod{p-1}$ . Then  $\frac{B_m}{m}$  and  $\frac{B_n}{n}$  are in  $\mathbb{Z}_p$  and

$$(1-p^m)\frac{B_m}{m} \equiv (1-p^n)\frac{B_n}{n} \pmod{p^a}$$

#### Review

## Kummer Congruences

Let  $B_n$  be the n-th Bernoulli number, and m,n be positive even integers with  $m \equiv n \pmod{p^{a-1}(p-1)}$  and  $n \not\equiv 0 \pmod{p-1}$ . Then  $\frac{B_m}{m}$  and  $\frac{B_n}{n}$  are in  $\mathbb{Z}_p$  and

$$(1-p^m)\frac{B_m}{m} \equiv (1-p^n)\frac{B_n}{n} \pmod{p^a}$$

- This allows us to define a p-adic L-function interpolating values of the zeta function - namely the Kubota-Leopoldt p-adic L function
- We can construct the p-adic L-function from p-adic measures i.e. for all  $a \in \mathbb{Z}_p^{\times}$  there exists some measure  $\mu^{(a)}$  on  $\mathbb{Z}_p^{\times}$  such that

$$\int_{\mathbb{Z}_p^{\times}} x^k d\mu^{(a)} = (1 - a^{k+1})(1 - p^k)\zeta(-k)$$



## *p*-adic *L*-functions

• We can also construct p-adic L functions associated to Dirichlet L-functions. Let  $\chi$  be an even Dirichlet character of conductor  $p^n$  for some  $n \ge 0$ , we have

$$\int_{\mathbb{Z}_p^{\times}} \chi(x) x^k d\mu^{(a)} = (1 - \chi(a) a^{k+1}) (1 - \chi(p) p^k) L(-k, \chi)$$

• If we fix k, we can view the above measure  $\mu^{(a)}$  as interpolating  $L(-k,\chi)$  for all Dirichlet characters  $\chi$  as above

## *p*-adic *L*-functions

• We can also construct p-adic L functions associated to Dirichlet L-functions. Let  $\chi$  be an even Dirichlet character of conductor  $p^n$  for some  $n \ge 0$ , we have

$$\int_{\mathbb{Z}_p^{\times}} \chi(x) x^k d\mu^{(a)} = (1 - \chi(a) a^{k+1}) (1 - \chi(p) p^k) L(-k, \chi)$$

- If we fix k, we can view the above measure  $\mu^{(a)}$  as interpolating  $L(-k,\chi)$  for all Dirichlet characters  $\chi$  as above
- We have  $\mathbb{Z}_p^{\times} = Gal(\mathbb{Q}(p^{\infty})/\mathbb{Q})$ , where  $\mathbb{Q}(p^{\infty})$  is the maximal abelian extension of  $\mathbb{Q}$  unramified outside of p
- For any number field  $F/\mathbb{Q}$ , the p-adic L-function should be a measure on  $Gal(F(p^{\infty})/F)$ , where  $F(p^{\infty})$  is the maximal abelian extension of F unramified outside of p

#### Overview of Katz

• Fix a CM field L with ordinary CM type  $\Sigma$  with respect to some embedding  $\bar{L} \hookrightarrow C_p$ : for any  $\sigma \in \Sigma, \tau \in \bar{\Sigma}$ , the p-adic valuation on L induced by the embeddings

$$L \rightrightarrows \bar{L} \hookrightarrow C_p$$

give rise to distinct p-adic valuations

#### Overview of Katz

• Fix a CM field L with ordinary CM type  $\Sigma$  with respect to some embedding  $\bar{L} \hookrightarrow C_p$ : for any  $\sigma \in \Sigma, \tau \in \bar{\Sigma}$ , the p-adic valuation on L induced by the embeddings

$$L \rightrightarrows \bar{L} \hookrightarrow C_p$$

give rise to distinct p-adic valuations

• The main goal of Katz's paper is to construct a p-adic L-function which interpolates the values  $L(0,\chi)$  for some Hecke grossencharacters  $\chi$ , i.e. we want some measure  $\mu$  such that

$$\int_{Gal(L(\rho^{\infty})/L)} \chi d\mu = L(0,\chi)$$

• Katz also shows this p-adic L-function satisfies a functional equation

#### Overview of Katz

• Fix a CM field L with ordinary CM type  $\Sigma$  with respect to some embedding  $\bar{L} \hookrightarrow C_p$ : for any  $\sigma \in \Sigma, \tau \in \bar{\Sigma}$ , the p-adic valuation on L induced by the embeddings

$$L \rightrightarrows \bar{L} \hookrightarrow C_p$$

give rise to distinct p-adic valuations

• The main goal of Katz's paper is to construct a p-adic L-function which interpolates the values  $L(0,\chi)$  for some Hecke grossencharacters  $\chi$ , i.e. we want some measure  $\mu$  such that

$$\int_{\operatorname{Gal}(L(\rho^{\infty})/L)} \chi d\mu \text{``} = \text{``} L(0,\chi)$$

- Katz also shows this p-adic L-function satisfies a functional equation
- Key idea: interpolating family of p-adic Hilbert modular forms obtained via differential operators from Eisenstein series

- ullet Fix a totally real field K of degree g over  $\mathbb Q$
- Let  $\mathcal{D}^{-1}$  be the inverse different of K, i.e.

$$\mathcal{D}^{-1} := \{ x \in F : tr(xy) \in \mathbb{Z} \text{ for all } y \in \mathcal{O}_K \}$$

- Let  $O := O_K$  be the ring of integers of K
- Let  $\mathfrak c$  be any fractional ideal of K

- ullet Fix a totally real field K of degree g over  $\mathbb Q$
- Let  $\mathcal{D}^{-1}$  be the inverse different of K, i.e.

$$\mathcal{D}^{-1} := \{ x \in F : tr(xy) \in \mathbb{Z} \text{ for all } y \in O_K \}$$

- Let  $O := O_K$  be the ring of integers of K
- ullet Let  ${\mathfrak c}$  be any fractional ideal of K

#### **Definition**

A Hilbert-Blumenthal abelian variety (HBAV) over a scheme S is a g-dimensional scheme X/S with a map  $\iota:O\hookrightarrow End_{O_S}(X)$  such that locally on S, the  $O\otimes O_S$ -module Lie(X) is free of rank 1

• Let  $X \otimes_O \mathfrak{c}$  be the abelian scheme such that for all schemes S'/S, we have

$$(X\otimes \mathfrak{c})(S')=X(S')\otimes_{O}\mathfrak{c}$$

• This gives a natural O-linear map

$$\mathfrak{c} \hookrightarrow Hom_{\mathcal{O}}(X, X \otimes \mathfrak{c})$$

• Let  $X \otimes_O \mathfrak{c}$  be the abelian scheme such that for all schemes S'/S, we have

$$(X\otimes \mathfrak{c})(S')=X(S')\otimes_{O}\mathfrak{c}$$

• This gives a natural O-linear map

$$\mathfrak{c} \hookrightarrow Hom_{\mathcal{O}}(X, X \otimes \mathfrak{c})$$

#### **Definition**

A c-polarization is an isomorphism  $\lambda: X^{\vee} \to X \otimes_{\mathcal{O}} \mathfrak{c}$  under which the symmetric elements of  $Hom_{\mathcal{O}}(X,X^{\vee})$  corresponds to (image of)  $\mathfrak{c}$ , and the polarizations in  $Hom_{\mathcal{O}}(X,X^{\vee})$  correspond to  $\mathfrak{c}^+$ , the cone in  $\mathfrak{c}$  of totally positive elements

• The symmetric elements of  $Hom_O(X, X^{\vee})$  are the maps

$$\{f: X \to X^{\vee}: f \circ \iota(r) = \iota^{\vee}(r) \circ f \text{ for all } r \in O\}$$

• Let  $\underline{\omega}_{X/S} := H^0(X, \Omega^1_{X/S})$ , this is dual to Lie(X/S), and both are  $O \otimes O_S$ -modules

- Let  $\underline{\omega}_{X/S} := H^0(X, \Omega^1_{X/S})$ , this is dual to Lie(X/S), and both are  $O \otimes O_S$ -modules
- We can upgrade the isomorphism  $Lie(X) \otimes_{O_S} \underline{\omega} \xrightarrow{\sim} O_S$  to an  $O \otimes O_S$ -isomorphism

$$Lie(X) \otimes_{O \otimes O_S} \underline{\omega} \xrightarrow{\sim} \mathcal{D}^{-1} \otimes O_S$$

such that the composition

$$Lie(X) \otimes_{O_S} \underline{\omega} \twoheadrightarrow Lie(X) \otimes_{O \otimes O_S} \underline{\omega} \xrightarrow{\sim} \mathcal{D}^{-1} \otimes O_S \xrightarrow{tr \otimes 1} O_S$$

gives the isomorphism above

ullet Every  $O\otimes O_S$ -basis element  $\omega$  gives an isomorphism

$$Lie(X) \xrightarrow{\sim} \mathcal{D}^{-1} \otimes \mathcal{O}_S$$



## Moduli spaces of HBAV

#### **Definition**

A  $\Gamma_{0,0}(N)$ -structure on a HBAV X/S is an O-linear homomorphism

$$i: \mathcal{D}^{-1} \otimes_{\mathbb{Z}} \mu_{N} \hookrightarrow X$$

# Moduli spaces of HBAV

#### **Definition**

A  $\Gamma_{0,0}(N)$ -structure on a HBAV X/S is an O-linear homomorphism

$$i: \mathcal{D}^{-1} \otimes_{\mathbb{Z}} \mu_{N} \hookrightarrow X$$

#### Theorem

Let  $\mathcal{M}(\mathfrak{c},N)$  be the moduli space of  $\mathfrak{c}$ -polarized HBAVs with  $\Gamma_{0,0}(N)$  level structure. Then  $\mathcal{M}(\mathfrak{c},N)$  is an algebraic stack over  $\mathbb{Z}$  which is smooth of relative dimension g. Moreover, for  $N \geq 4$ , the moduli problem is rigid, and hence  $\mathcal{M}(\mathfrak{c},N)$  is represented by a scheme.

Hence for  $N \ge 4$  we have a universal object

$$(X_{univ}, \lambda_{univ}, i_{univ}) \xrightarrow{\pi} \mathcal{M}(\mathfrak{c}, N)$$



• Every pair  $(X, \omega)$  over  $\mathbb C$  corresponds to a lattice  $\mathcal L \subset F \otimes \mathbb C$ 

- ullet Every pair  $(X,\omega)$  over  $\mathbb C$  corresponds to a lattice  $\mathcal L\subset F\otimes \mathbb C$
- ullet A nowhere vanishing differential  $\omega$  induces an  $O\otimes \mathbb{C}$ -isomorphism

$$\omega: Lie(X) \xrightarrow{\sim} \mathcal{D}^{-1} \otimes \mathbb{C} = F \otimes \mathbb{C}$$

- Every pair  $(X, \omega)$  over  $\mathbb C$  corresponds to a lattice  $\mathcal L \subset F \otimes \mathbb C$
- ullet A nowhere vanishing differential  $\omega$  induces an  $O\otimes \mathbb{C}$ -isomorphism

$$\omega: Lie(X) \xrightarrow{\sim} \mathcal{D}^{-1} \otimes \mathbb{C} = F \otimes \mathbb{C}$$

 Since Lie(X) gives a universal covering of X, we have the short exact sequence

$$0 o \pi_1(X) o Lie(X) o X o 0$$

 $\mathcal{L}$  is the image of  $\pi_1(X)$  under the map above.

- ullet Every pair  $(X,\omega)$  over  $\mathbb C$  corresponds to a lattice  $\mathcal L\subset F\otimes \mathbb C$
- ullet A nowhere vanishing differential  $\omega$  induces an  $O\otimes \mathbb{C}$ -isomorphism

$$\omega: Lie(X) \xrightarrow{\sim} \mathcal{D}^{-1} \otimes \mathbb{C} = F \otimes \mathbb{C}$$

 Since Lie(X) gives a universal covering of X, we have the short exact sequence

$$0 \to \pi_1(X) \to \mathit{Lie}(X) \to X \to 0$$

 $\mathcal{L}$  is the image of  $\pi_1(X)$  under the map above.

• A c-polarization  $\lambda$  on X corresponds exactly to an alternating O-bilinear form

$$\mathcal{L} imes \mathcal{L} o \mathcal{D}^{-1} \mathfrak{c}^{-1}$$

given as  $\langle u, v \rangle = \frac{Im(\bar{u}v)}{A}$ , for some A



- Every pair  $(X, \omega)$  over  $\mathbb C$  corresponds to a lattice  $\mathcal L \subset F \otimes \mathbb C$
- ullet A nowhere vanishing differential  $\omega$  induces an  $O\otimes \mathbb{C}$ -isomorphism

$$\omega: Lie(X) \xrightarrow{\sim} \mathcal{D}^{-1} \otimes \mathbb{C} = F \otimes \mathbb{C}$$

 Since Lie(X) gives a universal covering of X, we have the short exact sequence

$$0 \to \pi_1(X) \to Lie(X) \to X \to 0$$

 $\mathcal{L}$  is the image of  $\pi_1(X)$  under the map above.

• A c-polarization  $\lambda$  on X corresponds exactly to an alternating O-bilinear form

$$\mathcal{L} imes \mathcal{L} o \mathcal{D}^{-1} \mathfrak{c}^{-1}$$

given as  $\langle u, v \rangle = \frac{Im(\bar{u}v)}{A}$ , for some A

•  $\Gamma_{0,0}(N)$ -structure corresponds to an injective O-linear map

$$i:\mathcal{D}^{-1}\otimes\mathbb{Z}/n\mathbb{Z}\hookrightarrow\mathcal{L}\otimes\mathbb{Z}/n\mathbb{Z}$$

Let  $\mathfrak{a},\mathfrak{b}$  be fractional ideals of F such that  $\mathfrak{c}=\mathfrak{a}\mathfrak{b}^{-1}$ . We define the lattice

$$\mathcal{L}_{\mathfrak{a},\mathfrak{b}}(\tau) := 2\pi i (\mathcal{D}^{-1}\mathfrak{a}^{-1} \cdot 1 \oplus \mathfrak{b} \cdot \tau)$$

A polarization on  $\mathcal{L}_{\mathfrak{a},\mathfrak{b}}( au)$  can be described by an alternating pairing:

$$\langle 2\pi i(a+b\tau), 2\pi i(c+d\tau) \rangle = ad-bc$$

(In this case  $A = 4\pi Im(\tau)$ )

Let  $\mathfrak{a},\mathfrak{b}$  be fractional ideals of F such that  $\mathfrak{c}=\mathfrak{a}\mathfrak{b}^{-1}$ . We define the lattice

$$\mathcal{L}_{\mathfrak{a},\mathfrak{b}}(\tau) := 2\pi i (\mathcal{D}^{-1}\mathfrak{a}^{-1} \cdot 1 \oplus \mathfrak{b} \cdot \tau)$$

A polarization on  $\mathcal{L}_{\mathfrak{a},\mathfrak{b}}( au)$  can be described by an alternating pairing:

$$\langle 2\pi i(a+b\tau), 2\pi i(c+d\tau) \rangle = ad-bc$$

(In this case  $A = 4\pi Im(\tau)$ )

- ullet Every  ${\mathfrak c}$ -polarized HBAVs is isomorphic to  ${\mathcal L}_{{\mathfrak a},{\mathfrak b}}( au)$  for some au
- $\Gamma_{0,0}(N)$  level structure is determined by an isomorphism  $\epsilon$

$$O\otimes \mathbb{Z}/n\mathbb{Z} \xrightarrow{\epsilon} \mathfrak{a}^{-1}\otimes \mathbb{Z}/n\mathbb{Z}$$

such that

$$\mathcal{D}^{-1}\otimes \mathbb{Z}/n\mathbb{Z} \xrightarrow{\sim} \mathcal{D}^{-1}\mathfrak{a}^{-1}\otimes \mathbb{Z}/n\mathbb{Z} \xrightarrow{2\pi i \cdot} \mathcal{L}_{\mathfrak{a},\mathfrak{b}}(\tau)\otimes \mathbb{Z}/n\mathbb{Z}$$

# $\mathcal{M}(\mathfrak{c}, N)_{\mathbb{C}}$

For any 2 fractional ideals m, n, let

$$SL(\mathfrak{m}\oplus\mathfrak{n}):=\left\{egin{pmatrix}a&b\\c&d\end{pmatrix}:a,d\in O,b\in\mathfrak{m}^{-1}\mathfrak{n},c\in\mathfrak{m}\mathfrak{n}^{-1},det=1
ight\}$$

# $\mathcal{M}(\mathfrak{c}, N)_{\mathbb{C}}$

For any 2 fractional ideals m, n, let

$$SL(\mathfrak{m}\oplus\mathfrak{n}):=\left\{egin{pmatrix}a&b\\c&d\end{pmatrix}:a,d\in O,b\in\mathfrak{m}^{-1}\mathfrak{n},c\in\mathfrak{m}\mathfrak{n}^{-1},det=1
ight\}$$

• Fix a fractional ideal  $\mathfrak{c}$ , and ideals  $\mathfrak{a},\mathfrak{b}$  such that  $\mathfrak{c}=\mathfrak{a}\mathfrak{b}^{-1}.$  Let

$$\Gamma_{0,0}(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(\mathcal{D}^{-1}\mathfrak{a}^{-1} \oplus \mathfrak{b}) : a, d \in 1 + N\mathfrak{a}^{-1}\mathfrak{b}^{-1}, \\ c \in N\mathcal{D}\mathfrak{a}^{-1}\mathfrak{b}^{-1} \right\}$$

# $\mathcal{M}(\mathfrak{c}, N)_{\mathbb{C}}$

For any 2 fractional ideals m, n, let

$$SL(\mathfrak{m}\oplus\mathfrak{n}):=\left\{egin{pmatrix}a&b\\c&d\end{pmatrix}:a,d\in\mathcal{O},b\in\mathfrak{m}^{-1}\mathfrak{n},c\in\mathfrak{m}\mathfrak{n}^{-1},det=1
ight\}$$

• Fix a fractional ideal  $\mathfrak{c}$ , and ideals  $\mathfrak{a},\mathfrak{b}$  such that  $\mathfrak{c}=\mathfrak{a}\mathfrak{b}^{-1}$ . Let

$$\Gamma_{0,0}(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(\mathcal{D}^{-1}\mathfrak{a}^{-1} \oplus \mathfrak{b}) : a, d \in 1 + N\mathfrak{a}^{-1}\mathfrak{b}^{-1}, \\ c \in N\mathcal{D}\mathfrak{a}^{-1}\mathfrak{b}^{-1} \right\}$$

•  $\mathcal{M}(\mathfrak{c},N)_{\mathbb{C}}$  is isomorphic to  $H^g/\Gamma_{0,0}(N)$ 



# Structure of $\mathcal{M}(\mathfrak{c}, N)$

## Theorem (Ribet)

The geometric fibres of  $\mathcal{M}(\mathfrak{c}, N)$  over  $Spec(\mathbb{Z})$  are all geometrically irreducible.

# Structure of $\mathcal{M}(\mathfrak{c}, N)$

## Theorem (Ribet)

The geometric fibres of  $\mathcal{M}(\mathfrak{c}, N)$  over  $Spec(\mathbb{Z})$  are all geometrically irreducible.

#### Sketch of proof:

- The generic fiber is irreducible (smooth and connected)
- Let (N,p)=1. Every HBAV over a field of characteristic p with  $\Gamma_{0,0}(p^n)$ -structure for some  $n\geq 1$  is an ordinary abelian variety. We thus have map

$$f: \mathcal{M}(\mathfrak{c}, \mathsf{Np}^n)_{\mathbb{F}_p} \to \mathcal{M}(\mathfrak{c}, \mathsf{N})^{\mathit{ord}}_{\mathbb{F}_p}$$

- If  $N \ge 4$ , the fibers are principal homogenous spaces under  $(O/p^nO)^{\times}$
- $\mathcal{M}(\mathfrak{c}, N)_{\mathbb{F}_p}$  is irreducible, and  $Y := \mathcal{M}(\mathfrak{c}, N)_{\mathbb{F}_p}^{ord}$  is an open dense subset

## Theorem (Ribet)

The geometric fibres of  $\mathcal{M}(\mathfrak{c},N)$  over  $Spec(\mathbb{Z})$  are all geometrically irreducible.

• To show that  $f^{-1}(Y)$  is geometrically irreducible, we have to show the induced monodromy representation

$$\chi:\pi_1(Y\otimes \bar{\mathbb{F}}_p)\to (O/p^nO)^{\times}$$

is surjective.

## Theorem (Ribet)

The geometric fibres of  $\mathcal{M}(\mathfrak{c},N)$  over  $Spec(\mathbb{Z})$  are all geometrically irreducible.

• To show that  $f^{-1}(Y)$  is geometrically irreducible, we have to show the induced monodromy representation

$$\chi:\pi_1(Y\otimes \bar{\mathbb{F}}_p) \to (O/p^nO)^{\times}$$

is surjective.

• It then suffices to construct an ordinary abelian variety  $A \in Y$  over  $\mathbb{F}_{p^k}$  for sufficiently large k such that

$$\pi_1(Spec(\mathbb{F}_{p^k})) o \pi_1(Y \otimes \overline{\mathbb{F}}_p) o (O/p^nO)^{\times}$$

is surjective, and we observe that  $Frob_{p^k}$  is a topological generator of  $\pi_1(Spec(\mathbb{F}_{p^k}))$ , so it suffices to check the action of Frobenius on  $\mathcal{D}^{-1}\otimes\mu_{p^n}\hookrightarrow A[p^n]$ .

- Fix a ring R<sub>0</sub>
- Let  $\chi$  be a character of  $Res_{O/\mathbb{Z}}\mathbb{G}_m$ . Concretely, this as a map  $(O \otimes R)^{\times}$  to  $R^{\times}$  for all rings  $R/R_0$ .

- Fix a ring  $R_0$
- Let  $\chi$  be a character of  $Res_{O/\mathbb{Z}}\mathbb{G}_m$ . Concretely, this as a map  $(O\otimes R)^{\times}$  to  $R^{\times}$  for all rings  $R/R_0$ .
- If  $R_0$  contains  $O_{\tilde{K}}$ , where  $\tilde{K}$  is a normal closure of K,  $Res_{O/\mathbb{Z}}\mathbb{G}_m$  splits, then  $\chi$  is given by a tuple  $\mathbf{k} = (k_1, \dots, k_g) \in \mathbb{Z}^g$ .

- Fix a ring  $R_0$
- Let  $\chi$  be a character of  $Res_{O/\mathbb{Z}}\mathbb{G}_m$ . Concretely, this as a map  $(O\otimes R)^{\times}$  to  $R^{\times}$  for all rings  $R/R_0$ .
- If  $R_0$  contains  $O_{\tilde{K}}$ , where  $\tilde{K}$  is a normal closure of K,  $Res_{O/\mathbb{Z}}\mathbb{G}_m$  splits, then  $\chi$  is given by a tuple  $\mathbf{k}=(k_1,\ldots,k_g)\in\mathbb{Z}^g$ .

#### Definition

A c-HMF of weight  $\chi$  defined over  $R_0$  on  $\Gamma_{0,0}(N)$  is a rule f which assigns to every c-polarized HBAV over R with a nowhere vanishing differential  $\omega$  and  $\Gamma_{0,0}(N)$  structure i, an element  $f(X,\lambda,\omega,i)\in R$  such that

- **1**  $f(X, \lambda, \omega, i)$  depends only on the *R*-isomorphism class of  $(X, \lambda, \omega, i)$
- f commutes with base change
- $\bullet \quad \text{For all } a \in (O \otimes R)^{\times},$

$$f(X, \lambda, a^{-1}\omega, i) = \chi(a)f(X, \lambda, \omega, i)$$

• We denote by  $M(\mathfrak{c}, N, \chi; R_0)$  the space of all  $\mathfrak{c}$ -HMFs of weight  $\chi$  defined over  $R_0$ 

- We denote by  $M(\mathfrak{c}, N, \chi; R_0)$  the space of all  $\mathfrak{c}$ -HMFs of weight  $\chi$  defined over  $R_0$
- When  $N \geq 4$ , we let  $\underline{\omega} = \pi_*(\Omega^1_{\mathcal{M}/\mathbb{Z}})$ , and  $\underline{\omega}(\chi)$  be the extension of the structure group of  $\underline{\omega}$  by  $\chi$
- If  $R_0$  contains  $O_{\tilde{K}}$ , then the O-action on  $\underline{\omega}$  induces a decomposition  $\underline{\omega} = \oplus \underline{\omega}_i$ , and  $\underline{\omega}(\chi) = \otimes \underline{\omega_i}^{k_i}$

- We denote by  $M(\mathfrak{c}, N, \chi; R_0)$  the space of all  $\mathfrak{c}$ -HMFs of weight  $\chi$  defined over  $R_0$
- When  $N \geq 4$ , we let  $\underline{\omega} = \pi_*(\Omega^1_{\mathcal{M}/\mathbb{Z}})$ , and  $\underline{\omega}(\chi)$  be the extension of the structure group of  $\underline{\omega}$  by  $\chi$
- If  $R_0$  contains  $O_{\tilde{K}}$ , then the O-action on  $\underline{\omega}$  induces a decomposition  $\underline{\omega} = \oplus \underline{\omega}_i$ , and  $\underline{\omega}(\chi) = \otimes \underline{\omega_i}^{k_i}$
- c-Hilbert Modular Forms over  $R_0$  are thus elements of  $H^0(\mathcal{M}(\mathfrak{c},N)_{R_0},\underline{\omega}(\chi))$

- Let S be the set of g linearly independent  $\mathbb{Q}$ -linear forms  $I_i$  which map the totally positive elements of K to positive rational numbers
- Let  $\mathbb{Z}[[\mathfrak{ab}, S]]$  be the ring of all formal series

$$\sum_{\substack{lpha\in\mathfrak{ab}\label{ab}\label{ab} l_i(lpha)>0 ext{ for all }i}} oldsymbol{a_lpha} oldsymbol{q}^lpha \qquad oldsymbol{a_lpha}\in\mathbb{Z}$$

and  $\mathbb{Z}((\mathfrak{ab}, S))$  the ring obtained from  $\mathbb{Z}[[\mathfrak{ab}, S]]$  by inverting all  $q^{\alpha}$ , for  $\alpha$  the totally positive elements

- Let S be the set of g linearly independent  $\mathbb{Q}$ -linear forms  $I_i$  which map the totally positive elements of K to positive rational numbers
- Let  $\mathbb{Z}[[\mathfrak{ab}, S]]$  be the ring of all formal series

$$\sum_{\substack{lpha\in\mathfrak{ab}\label{ab}\label{ab} l_i(lpha)>0 ext{ for all }i}} a_lpha q^lpha \qquad a_lpha\in\mathbb{Z}$$

and  $\mathbb{Z}((\mathfrak{ab}, S))$  the ring obtained from  $\mathbb{Z}[[\mathfrak{ab}, S]]$  by inverting all  $q^{\alpha}$ , for  $\alpha$  the totally positive elements

- Consider the g-dimensional torus  $\mathbb{G}_m \otimes \mathcal{D}^{-1}\mathfrak{a}^{-1}$ . We want to construct a subgroup given by  $\mathfrak{b}$ , i.e. an  $O_K$ -linear map  $g:\mathfrak{b} \to \mathbb{G}_m \otimes \mathcal{D}^{-1}\mathfrak{a}^{-1}$
- It suffices to construct a  $\mathbb{Z}$ -linear map  $\mathfrak{ab} \to \mathbb{G}_m$ , so let  $\alpha \mapsto q^{\alpha}$



We hence obtain a rigid analytic HBAV given by

$$\mathbb{G}_m \otimes \mathcal{D}^{-1} \mathfrak{a}^{-1}/q(\mathfrak{b})$$

which algebrizes to a HBAV over  $\mathbb{Z}((\mathfrak{ab},S))$  which we denote by  $\mathit{Tate}_{\mathfrak{a},\mathfrak{b}}(q)$ 

We hence obtain a rigid analytic HBAV given by

$$\mathbb{G}_m \otimes \mathcal{D}^{-1} \mathfrak{a}^{-1}/q(\mathfrak{b})$$

which algebrizes to a HBAV over  $\mathbb{Z}((\mathfrak{ab}, S))$  which we denote by  $Tate_{\mathfrak{a},\mathfrak{b}}(q)$  We have a canonical polarization  $\lambda_{can}$  given by the isomorphism induced by

$$\mathit{Tate}_{\mathfrak{a},\mathfrak{b}}(q)^{\vee} \xrightarrow{\sim} \mathit{Tate}_{\mathfrak{b},\mathfrak{a}}(q) \xrightarrow{\sim} \mathit{Tate}_{\mathfrak{a},\mathfrak{b}}(q) \otimes \mathfrak{c}$$

We hence obtain a rigid analytic HBAV given by

$$\mathbb{G}_m \otimes \mathcal{D}^{-1} \mathfrak{a}^{-1}/q(\mathfrak{b})$$

which algebrizes to a HBAV over  $\mathbb{Z}((\mathfrak{ab},S))$  which we denote by  $Tate_{\mathfrak{a},\mathfrak{b}}(q)$  We have a canonical polarization  $\lambda_{can}$  given by the isomorphism induced by

$$\mathit{Tate}_{\mathfrak{a},\mathfrak{b}}(q)^{\vee} \xrightarrow{\sim} \mathit{Tate}_{\mathfrak{b},\mathfrak{a}}(q) \xrightarrow{\sim} \mathit{Tate}_{\mathfrak{a},\mathfrak{b}}(q) \otimes \mathfrak{c}$$

Moreover, we observe that we have an injection

$$\mathcal{D}^{-1}\mathfrak{a}^{-1}\otimes\mu_{\mathsf{N}}\hookrightarrow \mathit{Tate}_{\mathfrak{a},\mathfrak{b}}[\mathsf{N}]$$

so fixing an isomorphism  $\varepsilon: O/NO \to \mathfrak{a}^{-1}/N\mathfrak{a}^{-1}$  gives us the desired embedding

$$i(\varepsilon): \mathcal{D}^{-1} \otimes \mu_{N} \hookrightarrow \mathit{Tate}_{\mathfrak{a},\mathfrak{b}}[N]$$



We hence obtain a rigid analytic HBAV given by

$$\mathbb{G}_m \otimes \mathcal{D}^{-1} \mathfrak{a}^{-1}/q(\mathfrak{b})$$

which algebrizes to a HBAV over  $\mathbb{Z}((\mathfrak{ab}, S))$  which we denote by  $Tate_{\mathfrak{a},\mathfrak{b}}(q)$  We have a canonical polarization  $\lambda_{can}$  given by the isomorphism induced by

$$\mathit{Tate}_{\mathfrak{a},\mathfrak{b}}(q)^{\vee} \xrightarrow{\sim} \mathit{Tate}_{\mathfrak{b},\mathfrak{a}}(q) \xrightarrow{\sim} \mathit{Tate}_{\mathfrak{a},\mathfrak{b}}(q) \otimes \mathfrak{c}$$

Moreover, we observe that we have an injection

$$\mathcal{D}^{-1}\mathfrak{a}^{-1}\otimes\mu_{\mathcal{N}}\hookrightarrow \mathit{Tate}_{\mathfrak{a},\mathfrak{b}}[\mathcal{N}]$$

so fixing an isomorphism  $\varepsilon: O/NO \to \mathfrak{a}^{-1}/N\mathfrak{a}^{-1}$  gives us the desired embedding

$$i(\varepsilon): \mathcal{D}^{-1} \otimes \mu_{\mathsf{N}} \hookrightarrow \mathit{Tate}_{\mathfrak{a},\mathfrak{b}}[\mathsf{N}]$$

If  $\mathfrak{a}$  is prime to N, then both N,  $\mathfrak{a}$  have the same N-adic completions, so we have a canonical isomorphism

### q-expansions

The Lie algebra of  $Tate_{\mathfrak{a},\mathfrak{b}}$  is canonically given by

$$Lie(\mathbb{G}_m \otimes \mathcal{D}^{-1}\mathfrak{a}^{-1}) = \mathcal{D}^{-1}\mathfrak{a}^{-1} \otimes \mathbb{Z}((\mathfrak{ab}, s)).$$

If we have an isomorphism  $j: \mathfrak{a}^{-1} \otimes R_0 \to O_K \otimes R_0$ , then we have an isomorphism  $Lie(Tate_{\mathfrak{a},\mathfrak{b}}(q)) \simeq \mathcal{D}^{-1} \otimes R_0((\mathfrak{ab},s))$ , which gives us an element  $\omega_{\mathfrak{a}}(j) \in \underline{\omega}$ 

### q-expansions

The Lie algebra of  $Tate_{\mathfrak{a},\mathfrak{b}}$  is canonically given by

$$Lie(\mathbb{G}_m \otimes \mathcal{D}^{-1}\mathfrak{a}^{-1}) = \mathcal{D}^{-1}\mathfrak{a}^{-1} \otimes \mathbb{Z}((\mathfrak{ab}, s)).$$

If we have an isomorphism  $j: \mathfrak{a}^{-1} \otimes R_0 \to O_K \otimes R_0$ , then we have an isomorphism  $Lie(Tate_{\mathfrak{a},\mathfrak{b}}(q)) \simeq \mathcal{D}^{-1} \otimes R_0((\mathfrak{ab},s))$ , which gives us an element  $\omega_{\mathfrak{a}}(j) \in \underline{\omega}$ 

• Given c-HMF f, choose isomorphisms  $\varepsilon: O/NO \to \mathfrak{a}^{-1}/N\mathfrak{a}^{-1}$  and  $j: \mathfrak{a}^{-1} \otimes R_0 \to O_K \otimes R_0$ , the q-expansion of f at the cusp  $(\mathfrak{a}, \mathfrak{b}, j, i(\varepsilon))$  is the value

$$f(Tate_{\mathfrak{a},\mathfrak{b}}(q),\lambda_{can},\omega_{\mathfrak{a}}(j),i(\varepsilon)) \in R_0((\mathfrak{ab},S))$$

i.e.

$$f(\mathit{Tate}_{\mathfrak{a},\mathfrak{b}}(q),\lambda_{\mathit{can}},\omega_{\mathfrak{a}}(j),i(arepsilon)) = \sum_{lpha \in \mathfrak{a}\mathfrak{b}} \mathsf{a}(f,lpha)q^lpha,$$

for some  $a(f, \alpha) \in R_0$ 



## q-expansion principle

#### Proposition

If the q-expansion of any HMF f is zero at any cusp, then f=0

## q-expansion principle

#### Proposition

If the q-expansion of any HMF f is zero at any cusp, then f=0

#### Corollary

If f is a HMF defined over R such that the q-expansion coefficients of f at one cusp all lie in  $R_0$ , then there is some HMF defined over  $R_0$  which gives rise to f via base-change.

## q-expansion principle

#### Proposition

If the q-expansion of any HMF f is zero at any cusp, then f=0

### Corollary

If f is a HMF defined over R such that the q-expansion coefficients of f at one cusp all lie in  $R_0$ , then there is some HMF defined over  $R_0$  which gives rise to f via base-change.

Sketch of proof: Argument is similar to that for modular curves: we know the form on an open neighborhood of the cusp, and since we have Ribet's irreducibility result, the form is identically 0

# q-expansion for HMFs over $\mathbb C$

• By GAGA and the q-expansion principle, we see that giving any  $\mathfrak{c}-HMF$  over  $\mathbb C$  is equivalent to giving a holomorphic function f on  $\mathcal M(\mathfrak{c},N)$  transforming by  $\chi$  under the action of  $a\in (K\otimes \mathbb C)^\times$ , which is meromorphic at the cusps

# q-expansion for HMFs over $\mathbb C$

- By GAGA and the q-expansion principle, we see that giving any  $\mathfrak{c}-HMF$  over  $\mathbb C$  is equivalent to giving a holomorphic function f on  $\mathcal M(\mathfrak{c},N)$  transforming by  $\chi$  under the action of  $a\in (K\otimes \mathbb C)^\times$ , which is meromorphic at the cusps
- Since f is invariant under translation by an element of  $\mathcal{D}^{-1}\mathfrak{a}^{-1}\mathfrak{b}^{-1}$ , we can also write the q-expansion for HMFs defined over  $\mathbb{C}$  as

$$f = \sum_{\alpha \in \mathfrak{ab}} a_{\alpha} \exp(2\pi i Tr(\alpha \tau))$$

for all  $\tau \in K \otimes \mathbb{C}$ 

# q-expansion for HMFs over $\mathbb C$

- By GAGA and the q-expansion principle, we see that giving any  $\mathfrak{c}-HMF$  over  $\mathbb C$  is equivalent to giving a holomorphic function f on  $\mathcal M(\mathfrak{c},N)$  transforming by  $\chi$  under the action of  $a\in (K\otimes \mathbb C)^{\times}$ , which is meromorphic at the cusps
- Since f is invariant under translation by an element of  $\mathcal{D}^{-1}\mathfrak{a}^{-1}\mathfrak{b}^{-1}$ , we can also write the q-expansion for HMFs defined over  $\mathbb{C}$  as

$$f = \sum_{\alpha \in \mathfrak{ab}} a_{\alpha} \exp(2\pi i Tr(\alpha \tau))$$

for all  $\tau \in K \otimes \mathbb{C}$ 

• If g > 1, such f is holomorphic at the cusps (Koecher's principle)

#### Koecher's Principle

 $a_{\alpha} = 0$  unless  $\alpha = 0$  or  $\alpha$  is totally real

#### Koecher's Principle

 $\mathbf{a}_{lpha}=\mathbf{0}$  unless  $lpha=\mathbf{0}$  or lpha is totally real

- Assume there exists some  $\alpha_0 \in \mathfrak{ab}$  not totally positive with  $a_{\alpha_0} \neq 0$
- ullet Choose an embedding  $au_0: K\hookrightarrow \mathbb{R}$  such that  $au_0(lpha_0)<0$
- By Dirichlet's Unit Theorem, there exists some  $\epsilon \in O^{\times,+}$  such that  $\tau(\epsilon) < 1$  for all  $\tau \neq \tau_0 \ \tau_0(\epsilon) > 1$
- Consider the subseries

$$\sum_{n\in\mathbb{N}} a_{\alpha\epsilon^{2n}} e^{2\pi i \operatorname{Tr}(\alpha_0\epsilon^{2n}z)}$$

• Since  $\begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{pmatrix} \in \Gamma_{0,0}(N)$ , we have

$$a_{\alpha\epsilon^2} = a_{\alpha} \prod_i \tau_i(\epsilon)^{k_i}$$

• Take  $z=(i,\ldots,i)$ , and observe that  $\sum_{n\in\mathbb{N}}e^{-2\pi\operatorname{Tr}(\alpha_0\epsilon^{2n})}$  diverges



# Kodaira-Spencer Isomorphism

Similar to the case of modular curves, we have the following Kodaira-Spencer isomorphism

$$\Omega^1_{\mathcal{M}/\mathbb{Z}} \xrightarrow{\sim} \underline{\omega}^{\otimes 2} \otimes_{\mathcal{O}_{\mathcal{K}}} \mathfrak{c}^{-1}$$

given as follows. We have the SES

$$0 \to \underline{\omega} \to H^1_{dR} \to Lie(X^{univ\vee}) \to 0.$$

Given any derivation D, we can define the map

$$\mathsf{KS}(D):\underline{\omega} \to H^1_{dR} \xrightarrow{\nabla(D)} H^1_{dR} \to \mathsf{Lie}(X^{\mathit{univ}}) \simeq \mathsf{Lie}(X^{\mathit{univ}}) \otimes \mathfrak{c}$$

This induces an isomorphism between the tangent space and  $Hom_{O\otimes O_{\mathcal{M}}}(\underline{\omega}, Lie\otimes_{O}\mathfrak{c})\simeq Lie^{\otimes 2}\otimes_{O}\mathcal{D}^{-1}\mathfrak{c}$ , the dual of which is the map above

# Kodaira Spencer Map for $Tate_{\mathfrak{a},\mathfrak{b}}$

• For every  $\gamma \in \mathcal{D}^{-1}\mathfrak{a}^{-1}\mathfrak{b}^{-1}$ , we have a derivation

$$D(\gamma)(\sum a_{\alpha}q^{\alpha}) = \sum tr(\alpha\gamma)a_{\alpha}q^{\alpha}$$

• The Kodaira-Spencer map in this case is a map

$$\mathit{KS} : \mathit{Der}(\mathbb{Z}((\mathfrak{ab},s))) o \mathit{Lie}^{\otimes 2} \otimes_{\mathit{O}} \mathcal{D}^{-1}\mathfrak{c} = \mathcal{D}^{-1}\mathfrak{a}^{-1}\mathfrak{b}^{-1} \otimes \mathbb{Z}((\mathfrak{ab},s))$$
 and in fact  $\mathit{KS}(D(\gamma))$  maps to  $\gamma \otimes 1$