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1 Modular curves

Let
H = { z ∈ C | Im z > 0 }.

There is a left action of SL2(R) on H given as follows: for

g =

(
a b
c d

)
∈ SL2(R) and z ∈ H,

define

g · z :=
az + b

cz + d
.

Note that this yields a surjection
SL2(R) ↠ Authol(H),

where Authol(H) is the holomorphic automorphism group of H. We are interested in certain discrete
subgroups of SL2(R) whose actions produce interesting quotients of H.

Definition 1.1. A subgroup Γ ⊂ SL2(R) is a congruence subgroup if it is a subgroup Γ ⊂ SL2(Z)
such that Γ(N) ⊂ Γ with finite index for some N ≥ 1, where

Γ(N) =
{
g ∈ SL2(Z)

∣∣∣ g ≡
(
1 0
0 1

)
(mod N)

}
.

We will also usually assume that Γ is small enough, i.e., that Γ ⊂ Γ(N) for some N ≥ 3.

The group Γ (if small enough) acts freely and properly discontinuously on H, and this implies that
Γ\H has a canonical complex manifold structure given by the complex structure on H. Furthermore,
the quotient map H → Γ\H is the universal covering.

Definition 1.2. The complex manifold Γ\H is called a modular curve.

Proposition 1.3. A modular curve Γ\H has the following properties:

(a) Γ\H has the canonical structure of an algebraic variety over C, which is compatible with the
complex manifold structure.

(b) Γ\H is the moduli space of elliptic curves over C with “Γ-level structure”.

(c) The moduli interpretation in (b) also makes sense over some number field E (depending on Γ;
e.g., E = Q(ζN ) if Γ = Γ(N)). This moduli problem over E is represented by a quasi-projective
E-scheme whose base change to C recovers Γ\H as a C-scheme. We say that Γ\H has a model
over E.

(d) This moduli interpretation even extends integrally over Z[ζN , 1/N ], to produce a smooth
scheme.
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(e) The C-scheme Γ\H has a canonical compactification obtained by adding certain “special points”
(cusps), giving a proper algebraic curve.

We will now explain how to see (a)-(d).

Remark 1.4. To show (a), even after giving a structure of a complex manifold to Γ\H one cannot
appeal to the usual GAGA equivalence between smooth projective curves over C and compact
Riemann surfaces, because Γ\H is not compact. However, there is a canonical compactification of
Γ\H which is a compact Riemann surface (the Baily–Borel compactification).

1.1 Elliptic curves over C

Definition 1.5. An elliptic curve E over C is a smooth projective algebraic group of dimension 1.

Over C, every elliptic curve arises as a quotient C/Λ for some lattice Λ ⊂ C. More precisely,
given an elliptic curve E, there is a holomorphic group homomorphism exp : LieE → E coming
from Lie group theory. Here LieE is the tangent space at the identity O, and is a 1-dimensional
complex vector space. (Note that exp is not algebraic.) Then ker(exp) is a lattice in LieE and
(LieE)/ ker(exp)

∼−→ E is an isomorphism of elliptic curves. Notice also that (non-canonically) the
left hand side is isomorphic to C/Λ for some lattice Λ ⊂ C.

Remark 1.6. The map exp : LieE → E is a universal covering. Hence we have the following
canonical isomorphisms: ker(exp) = π1(E,O) = H1(E,Z).

Suppose E and E′ are elliptic curves. We have

Hom(E,E′) ∼=
{
f : LieE → LieE′ ∣∣ f is C-linear and f

(
H1(E,Z)

)
⊂ H1(E′,Z)

}
where the assignment is given by F 7−→ dF

∣∣
LieE

. Combining the above facts, we have an equivalence
of categories(

(V,Λ), V a 1-dimensional C-vector space and Λ ⊂ V a Z-lattice
) ∼−→

(
Elliptic curves/C

)
given by

(V,Λ) 7−→ V/Λ.

and the reverse map is given by
E 7→ (LieE,H1(E,Z)).

We first observe that two elliptic curves C/Λ1 and C/Λ2 are isomorphic if and only if there is a C-
linear holomorphic automorphism of C that takes Λ to Λ′. Every such holomorphic automorphism
of C is given by multiplication by an element α ∈ C×. Indeed, any continuous group automorphism
of a real vector space is necessarily an R-linear map, and one checks that φ(a+ bi) = aφ(1)+ bφ(i)
is holomorphic if and only if φ(i) = iφ(1). So C/Λ ∼= C/Λ′ if and only if Λ′ = αΛ for some α ∈ C×.
This gives us:

{Lattices inside C}/homothety
∼−→ {Elliptic curves overC}/isomorphism.
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Now we orient C, as real vector space, so that (1, i) is a positive orientation. We let

Z = {pairs (ω, ω′) of positively oriented R-bases of C}.

The group SL(2,Z) acts on Z via(
a b
c d

)
· (ω, ω′) = (aω + bω′, cω + dω′).

This action fixes the lattice Zω+Zω′ ⊂ C, and the quotient SL(2,Z)\Z is thus identified with the
set of all lattices in C. Thus we have a bijection

SL(2,Z)\Z
/
C× ∼−→ {Elliptic curves}/isomorphism.

where α ∈ C× takes (ω, ω′) to (αω, αω′), or equivalently takes the lattice Λ to αΛ.

We further observe that

(ω, ω′) 7−→ ω′

ω

identifies Z/C× with the upper half plane H ⊂ C:

H = {x+ iy ∈ C | y > 0}.

Thus, we have
SL(2,Z)\H ∼−→ {Elliptic curves}/isomorphism.

Let H± = C \R, the union of the upper and lower half planes. The group GL(2,Z) similarly acts
by fractional linear transformations on H± as above. Note that we further have an isomorphism

GL(2,Z)\H± ≃ SL(2,Z)\H ∼−→ {Elliptic curves}/isomorphism.

Let us now give these sets some complex structures. Recall that we have an SL2(Z)-invariant
holomorphic morphism j : H+ → C inducing a bijection

SL2(Z)\H+ ∼→ C.

Here j corresponds to evaluating the classical j-invariant of an elliptic curve, which we recall is
defined as follows:

Definition 1.7. Take an elliptic curve E/C and write it in Weierstrass form

y2 = x3 + ax+ b.

The j-invariant is given by

j(E) = 1728
4a3

4a3 + 27b2
.
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We may use this map to identify the quotient SL2(Z)\H+ with C in order to give the former a
complex manifold structure.

Note that H+ → SL2(Z)\H+ is a holomorphic map, but not a local isomorphism. In other words,

this is not a covering map; there is ramification over the images of i and e
2πi
3 with branching of

order 2 and 3 respectively. This is related to the fact that the SL2(Z)-action on H+ is problematic
in the following sense:

� −I ∈ SL2(Z) acts trivially on H+. In particular, the SL2(Z)-action on H+ is not free.

� The naive solution is to now consider the action of SL2(Z)/{±I} on H+. For this action,

most points in H+ have trivial stabilizer, but points in the orbit of i and the orbit of e
2πi
3

have nontrivial stabilizers. So this is also not a solution.

This phenomenon exactly corresponds to the fact that for any elliptic curve E over C (or in fact
any algebraically closed field of characteristic away from 2 or 3), the automorphism group of E is
either:

1. Z/2Z, where the nontrivial automorphism is negation. This corresponds to the inclusion of
{±I} in all stabilizers.

2. Z/4Z. This automorphism group applies to a unique isomorphism class of elliptic curves.

3. Z/6Z. This automorphism group applies to a unique isomorphism class of elliptic curves.

Remark 1.8. The complex manifold structure we put on SL2(Z)\H+ (using j) is the unique one
such that the projection H+ → SL2(Z)\H+ is holomorphic.

Remark 1.9. It is “more correct”, in some sense, to define the orbifold (or Deligne-Mumford stack)
quotient of H+ by SL2(Z). This allows us to still form something like a fine moduli space of elliptic
curves that remembers the automorphisms (including the generic Z/2Z-automorphisms). We will
discuss this in more detail when we talk about moduli spaces.

1.2 Alternative point of view: Hodge structures

In the previous subsection, we classified elliptic curves C/Λ up to isomorphism by morally fixing
the complex vector space C and varying Λ. We now introduce a different way to think about the
upper half plane with its complex structure which is more amenable to generalization to higher
dimensions. We may fix an abstract Z-module Λ, finite free of rank 2, and ask how we could vary
the C-structure.
As before, an elliptic curve is given by E = (LieE)/H1(E,Z). Also, we have a canonical iso-

morphism of 2-dimensional R-vector spaces: LieE ∼= H1(E,Z) ⊗Z R. Notice of course that LieE
also has a complex structure. Thus in order to reconstruct E, we need the abstract Z-module
H1(E,Z) together with a complex structure on the R-vector space H1(E,Z) ⊗Z R. In general, to
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define a complex structure on an R-vector space V , it suffices to define multiplication by i such
that i2 = −1. In other words, a complex structure on V is exactly an element J ∈ EndR(V ) such
that J2 = −1, and this element corresponds to scalar multiplication by i. Then, we extend this to
all C by setting:

(x+ iy) · v = x · v + y · J(v)

for all real numbers x, y. However, we will give a slightly different definition here:

Definition 1.10. A complex structure on R2 is a homomorphism

h : C× → GL(2,R) = Aut(R2)

such that the eigenvalues of h(z) ∈ C× on R2 are z and z̄.

The equivalence between the two definitions can be seen by taking J = h(i), and observing that
the condition on the eigenvalues forces the characteristic polynomial of J to be X2 + 1.

Choosing the base point e0 = (1, 0) ∈ R2, we see that any complex structure h defines an
isomorphism ih : R2 → C of complex vector spaces, via i−1

h (z) = h(z) · e0.
Now, denote V = R2, and let h : C× → Aut(R2) be a complex structure. Then for any z ∈ C,

z /∈ R, h(z) is diagonalizable and by definition has two eigenvalues on V ⊗ C, namely z and z̄.
For some z ∈ C×, let V −1,0 = V −1,0

h , resp. V 0,−1 = V 0,−1
h , denote the z-eigenspace, resp. the

z̄-eigenspace, for h(z) on VC. Observe that since h is a homomorphism, the subspaces V −1,0, V 0,−1

are independent of the choice of z ∈ C×\R.

Example 1.11. We can define a complex structure by the homomorphism

h0 : C× → GL(2,R) such that h0(x+ iy) =

(
x y
−y x

)
;

this obviously satisfies the hypothesis, and if we look at the eigenspaces for z = i, we get

V −1,0 = C · v0, V 0,−1 = C · v′0

where

v0 =

(
−i
1

)
, v′0 =

(
i
1

)
.

Proposition 1.12. Let V −1,0, V 0,−1 as above. Then under the complex conjugation on V ⊗R, we
have

V −1,0 = V 0,−1.

Proof. Let v, v′ be the basis of V ⊗ C such that h(i)v = iv, h(i)v′ = −iv′. Thus V −1,0 = C · v,
V 0,−1 = C · v′. On the other hand, h(i) ∈ Aut(R2) = GL(2,R) is a real matrix with eigenvalues i,
−i, hence there is a real matrix γ such that

γ−1h(i)γ =

(
0 −1
1 0

)
= h0(i).
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Then we see that, with v0 and v′0 as above, we have γC · v0 = V −1,0
h , resp. γC · v′0 = V 0,−1

h . Now,
we see that the claim is true for the complex structure h0, since v̄0 = v′0. Thus, since γ is real, the
claim follows.

Now, we can relate the space of complex structures to H in the following way. Observe that
GL(2,R) acts by fractional linear transformations on H±. The complex number τh = γ(i) then
belongs to H±. Moreover we can define a map

π : {complex structures} −→ H±

by π(h) = τh. This map may appear to depend on the choice of the matrix γ such that h(i) =
γh0(i)γ

−1, but we have the following:

Proposition 1.13. The map π is well-defined.

Proof. We write τh(γ) to take provisional account of this dependence. Note first of all that h0
and h both extend to algebra homomorphisms C → M(2,R), and since i generates C as R-algebra
it follows that γh0γ

−1 = h. If γ′ is another choice, then k = γ′−1γ belongs to the centralizer in
GL(2,R) of h0, i.e. to the centralizer of h0(C), which is just h0(C). Thus k ∈ h0(C), and if

k =

(
x y
−y x

)

we have τh(γ
′) = γ′(i) = γ(k(i)). Since k(i) =

xi+ y

−yi+ x
= i, there is no dependence.

In other words, letting K∞ = h0(C×) ⊂ GL(2,R), there is a sequence of identifications

{complex structures} ≃ GL(2,R)/K∞ ≃ H±.

The significance of this is that the final term has an obvious complex structure, hence so do the
first two terms. Moreover, this complex structure is GL(2,R)-invariant.
We can expland on this a little bit more, to define the Borel embedding. The function associating

the normalized vector v′ = v′h ∈ V 0,−1
h to h is compatible with the complex structure. Now

V 0,−1
h ⊂ VC is a variable line in VC, hence defines a variable point ph ∈ P(VC) = P1(C). If

(
α
β

)
is

the homogeneous coordinate of a point in P1, we use the standard inhomogeneous coordinate α/β.
Then the inhomogeneous coordinate of V 0,−1

h is just τh. We thus have a holomorphic embedding

{complex structures} ≃ GL(2,R)/K∞ ↪→ P(VC)

obtained by associating the subspace V 0,−1
h to h.

Now, we define a family of elliptic curves E over H which was given, for each complex structure
h, some elliptic curve Eh given as C/ih(Z2). Recall the formula for ih : R2 ≃ C:

ih
(
h(z)e0

)
= z · ih(e0).
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The map ih extends by linearity to a surjective homomorphism

R2 ⊗ C = VC −→ C.

The left hand side is V −1,0 ⊕V 0,−1, and since the formula shows that ih commutes with the action
of C× on both sides, it follows that the map VC → C is the projection

VC −→ VC/V
0,−1.

In other words, the C in the numerator is identified with V −1,0, and we have the formula

Eh = (VC/V
0,−1
h )/ih(Z2).

We can further check that ih(Z2) is given by Z⊕ Z · τh.

1.3 Moduli interpretation

We have constructed a family of elliptic curves E over H, but as we saw above, elliptic curves over
C are parametrized by SL2(Z)\H. We want to say that the family E/H descends to this quotient.
This would imply the existence of a universal family over SL2(Z)\H, and hence this would imply
that SL2(Z)\H a fine moduli space. (We will discuss this notion rigorously later.)

However, we see that E does not admit a quotient by GL(2,Z). More precisely, there is an action
of GL(2,Z) on the family E preserving the subgroup ih(Z2); we simply let g ∈ GL(2,Z) = Aut(Z2)
act naturally on ih(Z2) ⊂ VC. We run into the same issue as before: the element −I2 ∈ GL(2,Z)
acts as −1 on each Eh and the quotient is no longer a family of elliptic curves; and there are

other elliptic fixed points in H (namely i and e
2πi
3 ) whose stabilizers define automorphisms of the

corresponding elliptic curves.

Now, if we instead consider the group

Γ(N) = {g ∈ GL(2,Z) | g ≡ I2 (mod N), }

then there are no fixed points in H for any integer N ≥ 3.

Proposition 1.14. For N ≥ 3, Γ(N) acts freely and properly discontinuously on H+.

Proof. We sketch the proof that the action is free. Suppose γ ∈ Γ(N) has a fixed point in H+.
Since the stabilizer of i ∈ H+ in SL2(R) is SO2(R) and since H+ is transitive under SL2(R), we
see that γ must lie in a SL2(R)-conjugate of SO2(R). In particular γ must be semi-simple and its
eigenvalues in C have absolute value 1. On the other hand, the characteristic polynomial of γ is
monic with integer coefficients, so the eigenvalues of γ are algebraic integers. Combined with the
previous fact, we see that the eigenvalues of γ must be roots of unity. In particular, we see that
⟨γ⟩ is a torsion subgroup of Γ(N), but we can check that Γ(N) is torsion free.

We omit the proof that Γ(N) acts properly discontinuously. See [DS06, §2.1].
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In particular, this implies that Γ(N)\H+ has the natural structure of a Riemann surface and
H+ → Γ(N)\H+ is a covering. Further, this is obviously the universal covering, since H+ is simply
connected.

Definition 1.15. The modular curve Y (N) is the complex manifold

Y (N) :=
⊔

j∈(Z/NZ)∗
Γ(N)\H.

It also follows that the quotient Γ(N)\E is a family of elliptic curves over Γ(N)\H.

We can ask what this space classifies. Observe that Γ(N) fixes the group N−1Z2/Z2, the basis
of points of order N in Eh as defined by the generators(

1
0

)
and

(
0
1

)
modulo N is fixed for all h ∈ H. Thus, we see that points of Γ(N)\H carry more than the data

of the elliptic curve Eh: we also have an isomorphism

αN : (Z/NZ)2 ∼→ E[N ],

where
E[N ] := {z ∈ E | z + · · ·+ z (N times) = 0}.

Recall that E[N ] is non-canonically isomorphic to (Z/Z)2 = Z/NZ⊕ Z/NZ as Z/NZ-modules.

Definition 1.16. A choice of an isomorphism γ : E[N ]
∼→ (Z/NZ)2 is called a level-N structure

on E. Equivalently, this is a choice of an ordered basis (P,Q) of E[N ] as a free Z/NZ-module.

Now, we consider the following: For each j ∈ (Z/NZ)×, fix once and for all an element gj ∈

GL2(Z/NZ) such that det(gj) = j. For instance, we may take gj =

(
j 0
0 1

)
.

For each j ∈ (Z/NZ)× and each h ∈ H+, we can define an elliptic curve together with a level-N
structure: (Eh, γh = gj ◦ αN : Eh[N ]

∼−→ (Z/NZ)2). Moreover, we say that two tuples (E, γ) and
(E′, γ′) are isomorphic if we have an isomorphism f : E 7→ E′ such that we have a commutative
square

E[N ] E′[N ]

(Z/NZ)2 (Z/NZ)2.

f

γ γ′

Thus, we have a map

Y (N) → {elliptic curves with level N -structure}/isomorphism (1.3.1)

Proposition 1.17. The map (1.3.1) is a bijection.
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Proof. We sketch here surjectivity: Let (E, γ) be an elliptic curve with level N structure. As
before, we can identify E with a complex structure on given by some h ∈ H on Λ = Z2. Fix an
isomorphism

u : Λ/NΛ
∼−→ (Z/NZ)2.

Observe that a level N structure on E induces an isomorphism (also denoted γ)

γ : Λ/NΛ ≃ (Z/NZ)2,

we compose u with some element of GL2(Z) of determinant −1, and as a result we can always
assume that h ∈ H+. Now let γ′ be the composition

(Z/NZ)2 u−1

−−→ Λ/NΛ
γ−→ (Z/NZ)2.

Then γ′ ∈ GL2(Z/NZ). We note the following fact:

Fact. (Strong approximation for SL2.) The natural map SL2(Z) → SL2(Z/NZ) is surjective.

For a proof, see [DS06, Exercise 1.2.2]. Note that the statement is not true if we replace SL2 by
GL2, since elements of GL2(Z) all have determinants ±1.

Let j = det(γ′), so γ′g−1
j ∈ SL2(Z/NZ). By the above fact, we can compose u with a suitable

element of SL2(Z) to arrange that γ′ = gj . When we do this the element h we found in the above
will be moved by the element of SL2(Z). The image of such h under the above map will hence be
the isomorphism (E, γ).

Remark 1.18. Note that to make a distinguished choice of one connected component Γ(N)\H in
Y(N) amounts to choosing a primitive N -th root of unity. In particular, we see that Y (N) is a
more natural space to consider, since we are not required to make this choice. This difference will
become important later when we want to define the canonical model of the modular curve.

It is natural to simply ‘extend the moduli problem’ to classify elliptic curves over arbitrary bases
(at least away from primes dividing N), where we have E[N ] is (at least étale locally) isomorphic
to (Z/NZ)2. We will make this precise later.
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