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Abstract. Building on work of Fayad and Nekovář, we show that a certain part of the etale

cohomology of some abelian-type Shimura varieties is semisimple, assuming the associated au-

tomorphic Galois representations exists, and satisfies some good properties. The proof combines

an abstract semisimplicity criterion of Fayad-Nekovář with generalized Eichler-Shimura relations

for abelian type Shimura varieties and partial Frobenii.

1. Introduction

Let G be a reductive group over Q, and X be a conjugacy class of homomorphisms

h : ResC/RGm → GR

such that (G,X) is a Shimura datum. Given a compact open subgroup K ⊂ G(Af ), we can

form the associated Shimura variety

ShK(G,X)(C) = G(Q)\X ×G(Af )/K,

which is a complex manifold for K small enough, and has a canonical model over E, for some

number field E.

Consider a representation valued in complex vector spaces

ξ : GC → GL(Vξ)

such that ξ(Z(Q) ∩ K) = 1, where Z is the center of G. This gives rise to a locally constant

sheaf of complex vector spaces

Lξ = G(Q)\Vξ ×X ×G(Af )/K.

Suppose now that Gder is anisotropic, so that the Shimura variety ShK(G,X) is compact. We

now consider the complex analytic cohomology of the tower of the Shimura variety, i.e.

H i(Sh(G,X)an,Lξ) := lim→
K

H i(ShK(G,X)an,Lξ).

Choose h ∈ X, and let K∞ be the stabilizer of h in G(R). By Matsushima’s formula, we have

a decomposition of H i(Sh(G,X)an,Lξ) in terms of Lie algebra cohomology

H i(Sh(G,X)an,Lξ) =
⊕

π=π∞⊗π∞
m(π)H i(g,K∞;π∞ ⊗ ξ)⊗ (π∞),

where π runs through unitary automorphic representations of G(A), and m(π) is the multiplicity

of π appearing in L2(G(Q)\G(A), ω), the space of measurable functions on G(Q)\G(A) which

are square-integrable modulo center, where ω is the central character of π. Recall that π∞ is

cohomological in degree i for ξ (i.e. H i(g,K∞;π∞ ⊗ ξ) 6= 0) if and only if the central character

ωξ of ξ satisfies ωξ|Z(R) = ω−1
π∞ .
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Fix a prime l, and an isomorphism ι : Ql
∼−→ C. The representation ξ gives rise to an l-adic

automorphic sheaf, in the following way. ξ gives rise to a representation valued in Ql-vector

spaces

ξl : GQl
→ GL(Vξ,l),

and similarly gives rise to a sheaf

Lξ,l = G(Q)\Vξ,l ×X ×G(Af )/K.

If we consider the étale cohomology of the tower

H i
ét(Sh(G,X)Q,Lξ,l) := lim→

K

H i
ét(ShK(G,X)Q,Lξ,l),

then we have an isomorphism

H i
ét(Sh(G,X)Q,Lξ,l) ' H

i(Sh(G,X)an,Lξ)⊗ι Ql,

which is G(Af )-equivariant, and thus we have a decomposition

H i
ét(Sh(G,X)Q,Lξ,l) =

⊕
π∞

V i(π∞)⊗ (π∞),

where V i(π∞) = HomG(Af )(π
∞, H i

ét(Sh(G,X)Q,Lξ,l)). We define the Galois representation

ρ : Gal(Ē/E)→ V i(π∞).

The global Langlands correspondence conjectures that to the automorphic representation π

we have an associated semisimple Galois representation Gal(Ē/E) → LG, and we denote the

composition

ρ̃ : Gal(Ē/E)→ LG
r−µ−−→ GL(Vµ),

where µ is the minuscule cocharacter associated to the Shimura datumn.

When the group G is of the form ResF/QG
′ for some connected reductive group G′, and F is a

totally real field of degree d, the conjectures then imply that we have a decomposition (perhaps

after passing to a finite extension E′ of E) of ρ̃ as

ρ̃ =
⊗
v|∞

ρ̃v.

Moreover, ρ̃v should have the following form. Observe that over C, we have a decomposition

ResF/QG
′ '

∏
v|∞

G′,

and the cocharacter µ also decomposes as
∏
v µv. Then we should obtain ρ̃v as the composition

ρ̃v : Gal(Ē′/E′)
φπ−→ LG′

r−µv−−−→ GL(Vµv),

where here we view π as an automorphic representation of G′ over F .

The main theorem of this paper is the following:

Theorem 1.0.1. Let (G,X) be a Shimura datumn of abelian type such that G = ResF/QG
′ for

some connected reductive group G, and totally real number field F . Let π be an automorphic

representation of G(AQ,f ) = G′(AF,f ). For all v, suppose that the LG-valued Galois represen-

tation associated to π exists, and we consider for all v the composition with the highest weight

representation ρ̃v : Gal(F̄ /F )→ LG′ → GL(Vµv). Suppose that moreover we also know that
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(1) ρ̃v is strongly irreducible

(2) For all primes p of E such that p|l, the Hodge-Tate weights of ρ̃v′,p, viewed as a Gal(Ēp/Ep)-

representation, are distinct.

Then ρ is a semisimple representation.

This result was previously known in the cases where the abelian type Shimura variety had a

cover by an associated PEL type A Shimura variety, as shown in [FN19].

We can apply the above theorem to situations beyond the cases of unitary groups considered

in [FN19]. In particular, we can consider now the cases where G′ is an inner form of the groups

GSp2g or GSO2n, where the automorphic Galois representations have been constructed by Kret

and Shin in [KS20b] and [KS20a]. In the following theorem, we will let G∗ be one of the following

groups:

symplectic: G∗ = GSp2g

orthogonal, n even: G∗ = GSO2n

orthogonal, n odd: G∗ is a non-split quasi-split form of GSO2n relative to E/F , a CM

extension

We now assume that G′ is an inner form of G∗.

Theorem 1.0.2. Let π be a cuspidal L-algebraic automorphic representation of G′(AF ), satis-

fying

(1) There is a finite F -place vSt such that πvSt is the Steinberg representation of G∗(FvSt)

(resp. twisted by a character.

(2) π∞|sim|−n(n−1)/4 is ξ-cohomological for an irreducible algebraic representation ξ = ⊗y:F→Cξy
of the group (ResF/QG

∗)C, where sim is the similitude factor map sim : G∗ → Gm.

(3) The representation πv is regular after composing with the representation GSp2g
spin−−→

GL2g (resp. GSpin2n
std−−→ GL2n) at every infinite place v of F .

If moreover the l-adic Galois representation ρπ : Gal(F̄ /F )→ Ĝ∗ satisfies

(4) The image of ρπ is Zariski dense in Ĝ∗,

Then the Galois module

HomG(Af )(π
∞, H∗ét(Sh(G,X)Ē ,Ql))

is semisimple.

To show this result, we first define a ‘partial Frobenius isogeny’ at primes p which are split in

F , and then show the Eichler-Shimura congruence relations for these partial Frobenius for split

groups, using results from [Lee20]. More precisely, we show the following:

Theorem 1.0.3. Let (G,X) be a Shimura datumn of abelian type, such that G = ResF/QG
′

for some connected reductive group G, and totally real number field F of degree d. Let p be a

prime satisfying the conditions in Proposition 2.8.4. Then for all i = 1, . . . , d we have a partial

Frobenius correspondence Frobpi such that

Frob =
∏
i

Frobpi

and

Hi(Frobpi) = 0,
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where Hi is the renormalized characteristic polynomial of the irreducible representation of Ĝ′i
with highest weight µ̂i.

This is a refinement of the Eichler-Shimura relation considered for Hodge type Shimura va-

rieties in [Lee20]. The Hecke polynomial HG,X defined there (which is valid for all Shimura

varieties) will be a tensor product of the polynomials Hi, and in particular, under the same

assumptions of splitting on the prime p, we get the Eichler-Shimura relations for the abelian

type Shimura varieties considered in the theorem.

Once we have the generalized Eichler-Shimura relations, we can combine the above theorem

with a semisimplicity criterion for Lie algebras shown in [FN19], allows us to deduce the main

result. Roughly speaking, the generalized Eichler-Shimura relations, along with the condition of

distinct Hodge-Tate weights, shows that we have many Frobenius elements, namely a positive

density of them, which are semisimple. This, together with a strong condition on irreducibility

of the Galois representation coming from the Langlands correspondence, allows us to show that

the image of Galois is a reductive group, and hence the representation was semisimple.

We emphasize that the main theorem here cannot be used to prove semisimplicity of the

Galois representations constructed in, for instance, [BLGGT14], [KS20a] or [KS20b]. Instead,

the main novelty of this result is when one knows, for instance from [KSZ21], the expected

shape of the semisimplification of the Galois representation appearing in the cohomology of

the Shimura variety, via the study of zeta functions of Shimura varieties. In this case, we can

conclude that the equality holds even without taking semisimplification.

Acknowledgements. Many thanks to my advisor, Mark Kisin, for introducing this problem to

me, and for various helpful conversations. Thanks also to Sug Woo Shin, for suggestions about

applications in Section 4.

2. Eichler-Shimura Relations

In this section, we review some key results shown in [Lee20] to prove the generalized Eichler-

Shimura relations.

2.1. p-divisible groups. For the entirety of this subsection, we fix a prime p > 2, and let G

be a connected reductive group over Qp. Let k be a perfect field of characteristic p. We denote

by L = W (F̄p)[1/p] the maximal unramified extension of Qp.

Definition 2.1.1. A p-divisible group with G structure over k consists of a p-divisible group

G /k and a collection of ϕ-invariant tensors (sα,0) which define a reductive subgroup of GL(D(G ))

such that there exists a finite free Zp-module U and an isomorphism

(2.1.2) U ⊗Zp W (k)
∼−−→ D(G )(W (k))

such that under this isomorphism (sα,0) correspond to tensors (sα) ⊂ U⊗. Moreover, these sα
define the reductive subgroup GZp ⊂ GL(U).

Associated to any p-divisible group G with G-structure over F̄p, we have a G(W (F̄p))-σ-

conjugacy class of elements b ∈ G(L), such that under the isomorphism (2.1.2) the Frobenius

on D(G )(W (F̄p)) is given by bσ.

Let µ be the minuscule cocharacter of G such that b lies in G(W (F̄p))pµG(W (F̄p)) under the

Cartan decomposition.
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We now define the Rapoport-Zink space for the triple (G, b, µ) following [Kim18, Def. 4.6].

Definition 2.1.3. Let RZ(G, b, µ) be the functor which assigns to any p-locally nilpotent smooth

W -algebra R the set of isomorphism classes ((X, ρ, tα) such that

(1) (X, tα) is a p-divisible group over R with tensors tα ⊂ D(X)⊗, where (tα) consists of

morphisms of crystals tα : 1→ D(X)⊗ over Spec(R) such that

tα : 1[1/p]→ D(X)⊗[1/p]

is Frobenius equivariant;

(2) ρ : XR/p → XR/p is a quasi isogeny;

(3) For some nilpotent ideal J ⊂ R containing (p), the pull-back of tα over Spec(R/J) is

identified with sα under the isomorphism of isocrystals induced by ρ:

D(XR/J)[1/p]
∼−→ D(X0,R/J)[1/p].

(4) For some (any) formally smooth p-adic W -lift R̃ of R, endowed with the standard PD-

structure on ker(R̃ → R) = pmR̃ for some m, let (tα(R̃)) denote the R̃-section of (tα).

Then the R̃-scheme

P (R̃) := IsomR̃([D(X)R̃), (tα(R̃))], [R̃⊗Zp Λ∗, (1⊗ sα)]),

classifying isomorphisms matching (tα(R̃)) and (1⊗ sα), is a GW -torsor.

(5) The Hodge filtration Fil1(X) ⊂ D(X)(R) is a {µ}-filtration with respect to (tα(R)) ⊂
D(X)(R)⊗, where {µ} is the unique G(W )-conjugacy class of cocharacters such that

b ∈ G(W )pυG(W ).

If the group G admits a decomposition over Qp as G = G1×G2, then the associated Rapoport-

Zink spaces also decompose, as the following proposition [Kim18, Thm 4.9.1] shows:

Proposition 2.1.4. Let b = (b1, b2) ∈ G1(L) × G2(L), and µ = µ1 × µ2. Then we have an

isomorphism

RZ(G1, b1, µ1)×SpfW RZ(G2, b2, µ2)
∼−→ RZ(G, b, µ)

induced by taking product of p-divisible groups, and isogenies.

2.2. The moduli space p− Isog. We again suppose that the Shimura variety is of Hodge type,

and recall the constructions in [Lee20] of the associated moduli space p− Isog.

Let T be a scheme over OE,(v), and consider any two points x, y lying in SK(G,S)(T ). For

any geometric point t of T , let xt, yt be the pullback of x, y to t. From the main construction in

[Kis10], we have l-adic étale and de Rham tensors (sxt,α,l) for l 6= p, and (sxt,α,dR) (respectively

(syt,α,l), (syt,α,dR) for yt). Observe that k(t), the residue field at t, could be of either characteristic

0 or characteristic p. Suppose k(t) is a field of characteristic 0, i.e. it is an extension of E. Then,

we also have p-adic étale tensors (sxt,α,p), (syt,α,p). Otherwise, if k(t) is of characteristic p, it is

an extension of κ. Similarly, we have crystalline tensors (sxt,α,0), (syt,α,0).

We define a quasi-isogeny between x, y to be a quasi-isogeny f : Ax → Ay of abelian schemes

over T , such that for any geometric point t, the induced quasi-isogeny ft : Axt → Ayt of abelian

varieties over k(t) preserves all the tensors described above.

We define a p-quasi-isogeny between x, y to be a quasi-isogeny as defined above, such that

the isomorphism on the rational prime-to-p Tate modules f : V̂ p(Ax)Q
∼−→ V̂ p(Ay)Q, induced by

the quasi-isogeny Ax → Ay, respects the prime to p-level structures εpx, ε
p
y, i.e. εpy is given by
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the composition

VAfp
∼−→
εpx

V̂ p(Ax)Q
∼−→
f
V̂ p(Ay)Q.

In particular, we see that the weak polarizations on Ax,Ay differ by some power of p.

Let p− Isog be the fppf -sheaf of groupoids of p-quasi-isogenies between points on SKp(G,X).

Concretely, for any OE,(v)-scheme T , points of p−Isog are pairs (x, f), where x ∈ SKp(G,X)(T ),

and f is a p-quasi-isogeny f : Ax → Ay, where y ∈ SKp(G,X)(T ). For Kp ⊆ G(Afp), we can

define p − IsogKp in a similar way, by setting K = KpKp and considering p-quasi-isogenies

between points on SK(G,X) instead. For small enough Kp such that SK(G,X) is a scheme,

p − IsogKp is in fact also a scheme over OE,(v). In the following, we always assume sufficient

level structure Kp such that p− IsogKp is a scheme, and for notational simplicity we will simply

denote this by p− Isog.

We have can define projection maps back to SKp(G,X) sending a p-quasi isogeny (x, f) to x

(respectively y)

s : p− Isog→ SKp(G,X) t : p− Isog→ SKp(G,X).

These maps s, t are proper, and surjective.

Consider the closure J of the generic fiber p − Isog ⊗ E in p − Isog. We abuse notation

and still denote the special fiber of J by p − Isog ⊗ κ, and the Q-vector space of irreducible

components by Q[p−Isog⊗κ]. Since J is flat over OE,(v), Irreducible components of p−Isog⊗κ
are hence of dimension 2〈ρ, µ〉.

We now consider the µ-ordinary locus p − Isogord ⊗ κ. This is the subspace of p − Isog ⊗ κ
which maps to the µ-ordinary locus under the map s (equivalently, t). The following argument

can be extracted from [Lee20]:

Proposition 2.2.1. When G is split over Qp, the µ-ordinary locus is dense in p− Isog ⊗ κ

Proof. The discussion in [Lee20, §6] shows that for any irreducible component in p − Isog ⊗ κ,

it has a dense open subset which corresponds to the Newton strata for some unramified [b] ∈
B(G, υ). If G is split over Qp, then the only unramified element in B(G, υ) is the µ-ordinary

σ-conjugacy class, since we have an isomorphism B(G, υ) ' B(Gad, υad), which maps unramified

elements to each other. From [XZ17, 4.2.11], we see that the identity element represents the

basic element in B(Mad, µad) if and only if [1] ∈ B(Mad, µad), i.e. µad = 0 in π1(Mad)Γ. If Mad

is split, then µad = 0 in π1(Mad)Γ implies that µad is the sum of coroots of Mad, and hence µad
is either the identity or it cannot be minuscule. �

2.3. Abstract Eichler-Shimura Relations. We have isomorphisms of Hecke algebras

H(G(Qp)//Kp,Q) '
⊗
i

H(Gi(Qp)//Kp,Q).

Similarly, since GQp admits a decomposition, we can write

(2.3.1) µ =
∏
i

µi

where µi is a minuscule cocharacter of Gi. If we let M be the centralizer of µ in G, then similarly

we also have

MQp =
∏
i

Mi
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where Mi is the centralizer of µi in M . Thus, we also have an isomorphism of Hecke algebras

(2.3.2) H(M(Qp)//Mp,Q) '
⊗
i

H(Mi(Qp)//Mp,Q).

For a quasi-split reductive group G with standard parabolic subgroup P and Levi subgroup M ,

we can define following algebra homomorphism, known as the twisted Satake homomorphism

ṠGM : H(G(Qp)//Kp,Q)→ H(M(Qp)//Mp,Q),

defined as follows. Write P = NM , for N the unipotent radical of P , and given a function

f ∈ H(G(Qp)//Kp,Q), we have

ṠGM (f)(m) =

∫
n∈N

f(nm)dn.

The twisted Satake isomorphism also factors: we have an isomorphism

ṠGM =
⊗
i

ṠGiMi
.

Consider now the representation ρi : Ĝ → GL(Vµi) of Ĝ with highest weight cocharacter

(1, . . . , µi, . . . , 1), where µi is in the i-th position. Observe that ρµ = ⊗iρµi . Define the polyno-

mial

Hi(x) ∈ H(G(Qp)//Kp,Q)(x)

as the polynomial given by

(2.3.3) Hi(x) = det(x− pnrρµi(σ n ĝ)).

Note that since µ is central in M , µi is also central in M , hence we can consider the element

1µi(p)Mc
∈ H(M(Qp)//Mp,Q).

Proposition 2.3.4. We have the following equality in H(M(Qp)//Mp,Q): for all i,

Hi(1µi(p)Mc
) = 0.

Proof. This follows from the same proof as [B0̈2, Prop 3.4], and the observation that under the

decomposition (2.3.2), we see that Hi(1µi(p)Mc
) corresponds to the polynomial with coefficients

in H(Mi(Qp)//Mi,c,Q) defined similarly as in (2.3.3), where we instead take the determinant of

highest weight representation of Ĝi corresponding to µi. �

2.4. Newton stratification. From now on, we will drop the assumption that the Shimura

datumn is of Hodge type, and consider general abelian type Shimura datum. For any abelian

type Shimura datumn, we will let (G1, X1) denote the Hodge type Shimura datumn such that

there exists a central isogeny

f : Gder1 → Gder

which induces an isomorphism (Gad1 , X
ad
1 ) ' (Gad, Xad).

We now recall the construction of Newton strata for Shimura varieties of abelian type, as con-

structed in [SZ17]. Observe that for any connected reductive group G, and minuscule cocharacter

υ, we have an isomorphism B(G, υ) = B(Gad, υad). In [SZ17], the Newton strata is first con-

structed for adjoint groups, and thus we have a stratification on SKad
p

(Gad, Xad). The Newton

strata for SKp(G,X) is then defined to be the pullback of the Newton strata for SKad
p

(Gad, Xad)
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via the natural map

SKp(G,X)→ SKad
p

(Gad, Xad).

Fix a connected component X+ of X, and a connected component X+
1 of X1, such that their

images in Xad are equal to some connected component Xad,+. Let ShKp(G,X)+ denote the

connected component of ShKp(G,X) containing {1} × X+, and similarly let ShK1,p(G1, X1)+

denote the connected component of ShK1,p(G1, X1) containing {1} ×X+
1 .

We observe that the Newton strata of SKp(G,X)+ and SK1,p(G1, X1)+ is exactly that pulled

back along the maps

SK1,p(G1, X1)+ → SKp(G,X)+ → SKad
p

(Gad, Xad)+

in particular, we see that the µ1-ordinary locus of SK1,p(G1, X1)+ is exactly the preimage of the

µ-ordinary locus of SKp(G,X)+.

2.5. Model for the Hecke correspondences. For general abelian type Shimura varieties, we

do not have a moduli interpretation in terms of abelian varieties, and thus we do not have the

general formalism of p−Isog. However, we can still define models for the Hecke correspondences,

defined as follows.

Consider the Hecke correspondence C ⊂ ShK(G,X) × ShK(G,X) given by 1KpgKp on the

generic fiber, and let C be the closure of C in SK(G,X)×SK(G,X). For any correspondence

C over SK(G,X), we will let C0 denote the special fiber, which is a correspondence over

SK(G,X)κ. We have a similar construction for Hecke correspondences for the groups G1, G
ad.

Observe that the Hecke operators for G, Gad are related as follows. Let gad denote the image

of g ∈ G(Qp) in Gad. Cad ⊂ ShKad(Gad, Xad) × ShKad(Gad, Xad) given by 1Kad
p gadKad

p
on the

generic fiber. Let C be the closure of Cad in SKad(Gad, Xad) ×SKad(Gad, Xad), and let Cad0

denote the special fiber.

Our key observation is the following: Cad is the image of C under the (finite) projection maps

ShK(G,X)× ShK(G,X)→ ShKad(Gad, Xad)× ShKad(Gad, Xad).

Thus, we see that Cad0 is the image of the projection of C0 to a correspondence on SKad(Gad, Xad)κ.

We can also define the µ-ordinary locus Cord0 of C0 to be the subspace of C0 which maps

to the µ-ordinary locus under the natural projection maps to SK(G,X). The discussion of

Newton strata above shows that Cad,ord0 is the image of the projection to SKad(Gad, Xad)ordκ ×
SKad(Gad, Xad)ordκ of Cord0 , and also Cord1,0 .

Proposition 2.5.1. Let G be split over Qp, and suppose g ∈ G(Qp) is such that there exists

g1 ∈ G1(Qp) such that gad = gad1 ∈ Gad(Qp). Consider the correspondence C associated with

1KpgKp as above. Then we have C0 has a dense µ-ordinary locus.

Proof. Note that since we have an isomorphism B(G,µ) ' B(Gad, µad), the condition that G is

split implies that we also have exactly one unramified σ-conjugacy class in B(G1, µ1), and thus

p− Isog(G1, X1)⊗ κ has a dense µ-ordinary locus, by Proposition 2.2.1.

By the above arguments, we know that the Hecke correspondence Cad0 has a dense µ-ordinary

locus, since it is the image under a finite map of the Hecke correspondence C1,0 on ShK1(G1, X1),

which will have a dense µ-ordinary locus since p− Isog(G1, X1)⊗κ has a dense µ-ordinary locus.
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Thus, since the image of C0 under a finite map to SKad(Gad, Xad)κ×SKad(Gad, Xad)κ has a

dense µ-ordinary locus, the original Hecke correspondence must C0 must have a dense µ-ordinary

locus as well. �

Observe that from the definition of the HG,X(t) that the Hecke correspondences which appear

as coefficients in HG,X(t) are closed subschemes of Hecke correspondences lying in the subring

R of H(G(Qp)//Kp) generated by 1Kpµ(p)Kp . Let µ1 be the cocharacter of G1,Qp associated to

X1. Observe that we have µad = µad1 when after projecting to cocharacters of Gad. Thus, if the

group G is split, then the proposition holds for the coefficients of the Hecke polynomial.

2.6. Canonical liftings of µ-ordinary points. Consider now any µ-ordinary point x ∈
SKp(G,X)(Fp). We suppose now that the point x lies in SKp(G,X)+. Note that this is always

possible up to the action of some gp ∈ G(Apf ), since by [Kis10, 2.2.5] G(Apf ) acts transitively on

SKp(G,X).

We suppose that x is the image of some µ-ordinary point x1 ∈ SK1,p(G1, X1)+(Fp). We know

from [SZ16] that for every ordinary point in SK1,p(G1, X1)+(Fp), there exists a special point

lifting x̃1, with associated cocharacter µx̃1 satisfying µx̃1,Qp = µ1.

Note that since the map X → Xad is injective, and takes a special point x ∈ X to a special

point in Xad, if we consider the image x̃ of x̃1 in SKp(G,X)+, then x̃ is a special point whose

reduction mod p is the point x. Moreover, note that the cocharacter µx̃ is determined by the

map to the adjoint group µadx̃ , since for any map Gm → G, it is determined by the induced maps

to G/Gder and Gad, and since G/Gder is commutative, the map Gm → G/Gder is constant for

all elements x ∈ X. Thus, we see that the associated cocharacter µx̃ satisfies µx̃,Qp = µ, since

µad = µad1 . Thus, we have the following corollary:

Corollary 2.6.1. Let x be a µ-ordinary point in SKp(G,X)(Fp). Then x admits a lifting to a

special point x̃, and the pn-Frobenius map on x̃ is given by

j = µ(p)σ(µ(p)) . . . σn−1(µ(p)) ∈ G(Qp).

We now want to show the following proposition, which is a generalization of [B0̈2, Lemma

4.5].

Proposition 2.6.2. Let x be a µ-ordinary point in SKp(G,X)(Fp), and let x̃ = [gKp × h] be

the lifting constructed in Corollary 2.6.1. Let U denote the unipotent radical of the parabolic

subgroup of G associated to µ. Then for any u ∈ U(Qp), we have that the mod p reductions of

the points

[gKp × h] = [guKp × h]

are equal.

Proof. Up to the action of some gp ∈ G(Apf ), we may assume that x ∈ SKp(G,X)+(Fp). Observe

that we have an isomorphism of root systems Φ(G,T ) = Φ(Gad, T ad) = Φ(G1, T1). Hence if we

consider U1 the unipotent radical of the standard parabolic subgroup of G1 corresponding to

µ1, then we can identify U1 with U . In particular, since this result is true for the lift x̃1, for any

u ∈ U1(Qp), the same is true for the action of n ∈ U(Qp) on x̃. �

2.7. We now let G̃ be the simply connected cover of Gder1 . Let ZG denote the center of the

group G. Recall that we have a central isogeny

Z × G̃→ G,
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and thus, for a maximal torus T of G defined over Q, we have a injective map with finite cokernel

X∗(ZG)⊕X∗(T der) ↪→ X∗(T )

where T̃ in G̃ is a maximal torus of Gder.

In particular, observe that for any cocharacter λ ∈ X∗(T ), there exists some positive integer

m such that λm lifts (up to some cocharacter in X∗(ZG)) to a cocharacter of G̃.

By [MS82, 3.4], there exists a Shimura variety Sh(G′, X ′) and a map with central kernel

G′ → G1 such that G′der = G̃ and via the composition map

G̃→ Gder1 → Gder

there is an isomorphism of Shimura data (G′ad, X ′ad) ' (Gad1 , X
ad
1 ) ' (Gad, Xad).

Now, we consider the Shimura variety Sh(G̃, X̃). Since G̃ is simply connected, observe that

the action of any g′ ∈ G̃(Qp) preserves connected components. We now choose a connected

component X ′+ of X ′ which maps to Xad,+, and let Sh(G,X)+ be the connected component

which contains X ′+ × {1}. In particular, we see that g′ maps Sh(G′, X ′)+ back to itself.

Let g ∈ Gder(Qp) be the image of g′ under the central isogeny G̃ → Gder. Moreover, note

that on geometrically connected components we have

ShK(G,X)+ = ShK′(G
′, X ′)+/∆

where ∆ = ker(A (G′)◦ → A (G)), where the groups A (G′)◦ and A (G) are as defined in [Kis10,

§3.3]. Thus, we see that since the action of g′ preserves Sh(G′, X ′)+, so too does the action of g

preserve connected components of ShK(G,X), and moreover the action of g on ShK(G,X)+ is

exactly the quotient by ∆ of the action of g′ on Sh(G′, X ′)+.

If we let g1 ∈ Gder1 (Qp) be the image of g′ under the central isogeny G̃ → Gder1 , a similar

result holds for the action of g1.

2.8. Partial Frobenius for abelian type. Similar to the situation for the partial Frobenius for

Shimura varieties of Hodge type, we would like to define the partial Frobenius to be the p-power

quasi-isogeny represented by µi(p). Since we are in the abelian type case, we cannot work directly

with p-divisible groups. Instead, here we will define the partial Frobenius correspondence, at

least over the ordinary locus.

Suppose that p is a prime which satisfies the following criterion:

(1) p splits in F

(2) The group G has good reduction at p

2.8.1. Firstly we will assume the group G is adjoint. By [Kis17, 4.6.6], there is a Hodge type

Shimura datum (G1, X1) such that

(1) (Gad1 , X
ad
1 )

∼−→ (G,X) and ZG1 is a torus;

(2) if (G,X) has good reduction at p, then (G1, X1) in (1) can be chosen to have good

reduction at p, and such that E(G,X)p = E(G1, X1)p.

Since ZG1 is an unramified torus, by [Ama69, Corollary 2], we know that H1(Qp, ZG1) is trivial,

and thus we have a surjective map

G1(Qp) � G(Qp).

More precisely, it tells us that the element µi(p) ∈ G(Qp) lifts to an element µ̃i(p) ∈ G1(Qp) for

some cocharacter µ̃i of G1. Now, observe that m̃ui(p) lies in the center of M1, the centralizer of



SEMISIMPLICITY OF ÉTALE COHOMOLOGY OF CERTAIN SHIMURA VARIETIES 11

µ1. Thus, we may consider the section of p−IsogG1
given by the image of 1µ̃i(p)M1(Zp). This gives

me a correspondence on S (G1, X1)κ, which we project to get a correspondence on S (G,X)κ.

This is the partial Frobenius correspondence Frobpi . Observe that by construction we have

Frob =
∏
i

Frobpi ,

since the product of the images of 1µ̃i(p)M1(Zp) is the image of 1µ̃(p)M1(Zp), where µ̃ is a cocharacter

whose image in G(Qp) is µ(p), which corresponds to the Frobenius over the ordinary locus.

2.8.2. More generally, if G is not adjoint, then we will consider the Hecke correspondence

on S (G,X)κ given by h(1Kpµi(p)Kp), and its image in S (Gad, Xad)κ. The image is given by

the Hecke correspondence h(1Kad
p µadi (p)Kad

p
) in S (Gad, Xad)κ, which in particular contains the

partial Frobenius correspondence Frobadpi as an closed subscheme. Then, we define Frobpi to be

the preimage of Frobadpi under the projection map

h(1Kpµi(p)Kp) � h(1Kad
p µadi (p)Kad

p
).

It remains to check that

(2.8.3) Frob =
∏
i

Frobpi ,

which we can check over the ordinary locus. This follows from the corresponding observation for

Frob◦,ad, and noting that over the ordinary locus closed points in Frobpi consist of the reduction

mod p of pairs (x̃, µi(p) · x̃), where x̃ is the special point lift of x constructed previously. Thus,

we have the following proposition:

Proposition 2.8.4. Let (G,X) be a Shimura datumn of abelian type, and let (G1, X1) be a

Hodge type Shimura datumn constructed in (2.8.1) for (Gad, Xad). Let p be a prime such that

(1) p splits in F

(2) The group G has good reduction at p

Then we have a partial Frobenius correspondence Frobpi such that

(2.8.5) Frob =
∏
i

Frobpi .

Remark 2.8.6. Since we do not have a moduli interpretation for general abelian type Shimura

varieties, outside of the µ-ordinary locus, it is not clear what Frobpi has to do with partial

Frobenii. However, the above result at least suggests that the Frobenius isogeny admits a

decomposition into factors for each prime p above p.

2.9. Proof of Eichler-Shimura relations.

Proposition 2.9.1. Let (G,X) be a Shimura datumn of abelian type, such that G = ResF/QG
′,

and p a prime satisfying the conditions in Proposition 2.8.4. Let Hi(t) be the polynomial defined

in (2.3.3), viewed as a polynomial with coefficients in Corr(Sκ,Sκ) via the map h. Then we

have the equality

Hi(Frobpi) = 0.

in the ring Corr(Sκ,Sκ).
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Proof. Firstly, observe that from Proposition 2.5.1, all the terms appearing in Hi(Frobpi) have

a dense µ-ordinary locus, hence it suffices to show the result where we restrict all the terms to

the µ-ordinary locus. Applying [B0̈2, A.6], to show that Hi(Frobpi) = 0, it suffices to show that

x ·Hi(Frobpi) = 0

for all x ∈ SKp(G,X)(Fp)ord.

Let the Hecke polynomial be

Hi(t) =
∑
j

Ajt
j ,

for elements Aj ∈ H(G(Qp)//Kp). Let h(Aj) denote the mod p algebraic cycle in Corr(Sκ,Sκ)

corresponding to Aj . Thus, we want to show that

(2.9.2) x ·

∑
j

Frobjpi · h(Aj)

 = 0

where Frobpi is the correspondence defined above.

The proof then follows as in [B0̈2, Thm 4.7]. As constructed above, we let x̃ be the special

point lift of x. Write x̃ = [gK × h], and we write the coefficients of the Hecke polynomial Aj in

terms of left Kp-cosets of G(Qp)

Aj =
∑
k

n
(j)
k g

(j)
k Kp

It remains for us to show that

(2.9.3)
∑
j,k

n
(j)
k [gµi(p

−k)g
(j)
k K × h] = 0,

since (2.9.2) is the mod p reduction of (2.9.3), and we observe that the partial Frobenius acting

on x̃ is given by µi(p). The equality in (2.9.3) follows from the abstract Eichler-Shimura relation

and the Proposition 2.6.2. �

3. Semisimplicity Criterion

3.1. An abstract semisimplicity criterion. We first recall the following theorem of Fayad

and Nekovář [FN19, Theorem 1.7].

Definition 3.1.1. A representation ρ : ΓE → GL(V ) is strongly irreducible if the restriction to

any open finite index subgroup U ρU is still irreducible.

Theorem 3.1.2. Let Γ be a profinite group, V,W1, ...,Wr non-zero vector spaces of finite di-

mension over Q. Let ρ : Γ→ AutQ(V ) and ρi : Γ→ AutQ(W ) be representations of Γ with Lie

algebras

gi = Lie(ρi(Γ)), g = Lie(ρ(Γ)).

We denote ḡi = gi⊗ Q̄, ḡ = g⊗ Q̄. If the following three conditions hold, then the representation

ρ = ρss is semisimple.

(1) Each ρi is strongly irreducible (which implies that each gi is a reductive Q̄-Lie algebra

and each element of its centre acts on Wi by a scalar).

(2) For each i = 1, . . . , r, every (equivalently, some) Cartan subalgebra hi of gi acts on Wi

without multiplicities (i.e., all weight spaces of hi onWi are one-dimensional).
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(3) There exists an open subgroup Γ′ ⊂ Γ and a dense subset Σ ⊂ Γ′ such that for each

g ∈ Σ there exists a finite dimensional vector space over Q̄ (depending on g) V (g) ⊃ V

and elements u1, . . . , ur ∈ AutQ(V (g)) such that uiuj = ujui, Pρi(g)(ui) = 0 for all i,

j = 1, ..., r, and V is stable under u1 . . . ur and u1 . . . ur|V = ρ(g)

We state here a theorem of Sen [Sen73, Theorem 1] which we will use to find representations

which satisfy condition (2) of the theorem above.

Proposition 3.1.3. Let g = Q̄l · Lie(ρ̃(GalE)) ⊂ gl(n, Q̄l) be the Q̄l-Lie algebra generated by

the image of ρ̃. Then any Cartan subalgebra h ⊂ g acts on Q̄n
l by the n Hodge-Tate weights of

ρ̃|GFτ , for any τ : F ↪→ Q̄l.

3.2. Proof of Main Theorem. We prove in this subsection Theorem 1.0.1.

Proof. Observe that to show that the representation ρ is semisimple, it suffices to show that ρ|U
is semisimple for any open finite index subgroup of Gal(Ē/E). Thus, it suffices to find a set of

primes p of positive density such that ρ(Frobp) is a semisimple endomorphism of V i(π∞).

From the Eichler-Shimura relation for split primes, observe that if we let H be the Hecke

polynomial H, then we have

H(Frobp|H i(ShK)) = 0

as endomorphisms of H i(ShK). Applying the decomposition of H i(ShK), observe that since

each summand V i(π∞)⊗(π∞)K is Frobenius stable, we can consider Frobp as an endomorphism

of V i(π∞).

Replacing each element of the Hecke algebra with its eigenvalue on π
Kp
p , we obtain

H|
π
Kp
p

(Frobp|V i(π∞)⊗(π∞)K ) = 0.

Observe that the polynomial on the right hand side is, by the definition of the Hecke polynomial,

det(t− ρ̃′(Frobp)) =: Pρ̃.

In order to show semisimplicity of the endomorphism given by Frobp, it suffices to show that

the Pρ̃ has distinct roots. This is an open condition on Gal(Ē/E), hence it suffices to exhibit

an element u ∈ Gal(Ē/E) such that the characteristic polynomial of ρ(u) has distinct roots. To

see this, observe that Proposition 3.1.3 applies, hence the Lie algebra

ḡ = Q̄l · Lie(ρ̃(Gal(Ē/E))

contains a semisimple element whose eigenvalues on Vi(π
∞) act by the Hodge-Tate weights of

ρl. By assumption (2), the Hodge-Tate weights of ρl are all dinstinct. This implies that there is

an open subset of Gal(Ē/E) where the characteristic polynomial of ρ(u) has distinct roots.

Finally, we conclude using the criterion in Theorem 3.1.2, since we have constructed a Zariski

dense set of elements which are semisimple, that ρ is semisimple. �

4. Applications to some Shimura varieties

We discuss here some examples of Shimura varieties where Theorem 1.0.1 applies. Consider

the Shimura variety associated to the group ResF/QG, where G is some inner form of GSp2n,F

which is compact modulo center for at least one place v|∞ of F . Let π be a cuspidal L-algebraic

automorphic representation of G(AF ), and we assume that π satisfies

(1) There is a finite F -place vSt such that πvSt is the Steinberg representation of GSp2n(FvSt)

twisted by a character.
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(2) π∞|sim|n(n+1)/4 is ξ-cohomological for an irreducible algebraic representation ξ = ⊗y:F→Cξy
of the group (ResF/QGSp2n)C, where sim is the similitude factor map sim : GSp2n → Gm.

Under these conditions on π, Kret and Shin [KS20b, Theorem A] construct the Galois represen-

tation

ρπ : Gal(F̄ /F )→ GSpin2n+1(Ql)

associated to π. If we moreover assume that the Zariski closure of the image of ρπ is Ĝ∗ (which

should hold generically), then at all places v|∞ where the group is not compact modulo center,

the associated representation

ρ̃π,v : Gal(F̄ /F )→ GSpin2n+1(Ql)
spin−−→ GL(V ),

ρ̃π,v will be strongly irreducible. This is because ρπ is irreducible, since it does not factor through

any Levi subgroup, and if we look at the Zariski closure of the image of any finite index open

subgroup, it must also be Ĝ∗, since Ĝ∗ is connected, and thus also irreducible.

Moreover, the regularity condition implies that the Hodge-Tate weights of ρ̃π,v are distinct.

Under all these conditions, we have may apply the Main Theorem, and we can deduce the

following:

Theorem 4.0.1. Let π be a cuspidal L-algebraic automorphic representation of G′(AF ), satis-

fying

(1) There is a finite F -place vSt such that πvSt is the Steinberg representation of G∗(FvSt)

twisted by a character.

(2) π∞|sim|−n(n+1)/4 is ξ-cohomological for an irreducible algebraic representation ξ = ⊗y:F→Cξy
of the group (ResF/QGSp2n)C, where sim is the similitude factor map sim : GSp2n → Gm.

(3) The representation πv is spin-regular at every infinite place v of F

. If moreover the l-adic Galois representation ρπ : Gal(Ē/E)→ GSpin2n+1 satisfies

(1) The Zariski closure of the image of ρπ maps onto SO2n+1,

Then the Galois module

HomG(Af )(π
∞, H∗et(Sh(G,X),Ql))

(which is finite-dimensional over Ql is semisimple.
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