
TORSION VANISHING FOR SOME SHIMURA VARIETIES

LINUS HAMANN AND SI YING LEE, WITH AN APPENDIX BY DAVID HANSEN

Abstract. We generalize the torsion vanishing results of [CS17; CS19; Kos21; San23]. Our results
apply to the cohomology of general Shimura varieties (G, X) of PEL type A or C, localized at a
suitable maximal ideal m in the spherical Hecke algebra at primes p such that GQp is a group for
which we know the Fargues-Scholze local Langlands correspondence is the semi-simplification of a
suitably nice local Langlands correspondence, as shown in [FS21; Ham21; HKW22; BHN22]. This is
accomplished by combining Koshikawa’s technique [Kos21], the theory of geometric Eisenstein series
over the Fargues-Fontaine curve [Ham22], the work of Santos [San23] describing the structure of the
fibers of the minimally and toroidally compactified Hodge-Tate period morphism for general PEL
type Shimura varieties of type A or C, and ideas developed by Zhang [Zha23] on comparing Hecke
correspondences on the moduli stack of G-bundles with the cohomology of Shimura varieties. In the
process, we also establish a description of the generic part of the cohomology that bears resemblance
to the work of Xiao-Zhu [XZ17]. Moreover, we also construct a filtration on the compactly supported
cohomology that differs from Mantovan’s filtration in the case that the Shimura variety is non-
compact, allowing us to circumvent some of the circumlocutions taken in [CS19; Kos21]. Our
method showcases a very general strategy for proving such torsion vanishing results, and should
bear even more fruit once the inputs are generalized. Motivated by this, we formulate an even more
general torsion vanishing conjecture (Conjecture 6.6).
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1. Introduction

Let G be a connected reductive group over Q admitting a Shimura datum (G, X), and let A (resp.
Af ) denote the adeles (resp. finite adeles) of Q. Fix a prime number p > 0 and let G := GQp be the
base-change to Qp. We will assume that G is unramified so that there exists a hyperspecial subgroup
Khs
p ⊂ G(Qp) and a Borel B surjecting onto a maximal torus T which we now fix. We consider the

open compact subgroup K := KpKhs
p ⊂ G(Af ), where Kp ⊂ G(Apf ) denotes a sufficiently small

level away from p. Let Sh(G, X)K denote the corresponding Shimura variety defined over the reflex
field E. Given a prime p ̸= ℓ, we will be interested in understanding the ℓ-torsion cohomology
groups

RΓc(Sh(G, X)K,E ,Fℓ)
and

RΓ(Sh(G, X)K,E ,Fℓ).
In particular, since the level at p is hyperspecial, the unramified Hecke algebra

HKhs
p

:= Fℓ[Khs
p \G(Qp)/K

hs
p ]

will act on these complexes via the right action. Given a maximal ideal m ⊂ HKhs
p

, we can localize
both of these cohomology groups at m. We will be interested in describing this localization. To do
this, we recall that, given such a maximal ideal m ⊂ HKhs

p
, this defines an unramified L-parameter

ϕm :WQp → LG(Fℓ)
specified by a semisimple element ϕm(FrobQp). In particular, if T denotes the maximal torus of G
then ϕm is induced from a parameter ϕTm :WQp → LT (Fℓ) ⊂ LG(Fℓ) factoring through the L-group
of the maximal torus. Now, recall that the irreducible representations of LT correspond to the
Γ-orbits X∗(TQp

)/Γ of geometric dominant cocharacters of G. We have the following definition.

Definition 1.1. [Ham22, Definition 1.4] Given a toral L-parameter ϕT : WQp → LT (Fℓ), we say
that ϕT is generic if, for all α ∈ X∗(TQp

)/Γ corresponding to a Γ-orbit of coroots, we have that
the complex RΓ(WQp , α ◦ ϕT ) is trivial. Similarly, we say that m is generic if ϕTm is a generic toral
parameter.

If G = GLn then this coincides with the notion of decomposed generic considered in [CS17,
Definition I.9]. We set d = dim(Sh(G, X)K). Motivated by [CS17, Theorem 1.1] and [CS19,
Theorem 1.1], we make the following conjecture.

Conjecture 1.2. Let (G, X) be a Shimura datum such that G = GQp is unramified and K = KpK
p

is a sufficiently small level with Kp = Khs
p hyperspecial. If m ⊂ HKhs

p
is a generic maximal ideal

then the cohomology of RΓ(Sh(G, X)K,E ,Fℓ)m (resp. RΓc(Sh(G, X)K,E ,Fℓ)m) is concentrated in
degrees d ≤ i ≤ 2d (resp. 0 ≤ i ≤ d).

We first recall the motivating situation of Caraiani-Scholze [CS17; CS19]. Let F/Q be a CM field,
and let (B, ∗, V, ⟨·, ·⟩) be a PEL datum with B a central simple F -algebra and V a non-zero finite
type left B-module. Let (G, X) denote the Shimura datum attached to it, where G is a connected
reductive group over Q defined by the B-linear automorphisms of V preserving the choice of pairing
⟨·, ·⟩. We have the following result.

Theorem 1.3. [CS17; CS19; Kos21; San23] Assume that (G, X) is a PEL type Shimura datum of
type A. If the prime p splits completely in F then Conjecture 1.2 is true.

Remark 1.4. Koshikawa proved this under the assumption that B = F and V = F 2n, and the global
unitary group G is quasi-split, as well as in the case when p is split in F and the Shimura variety
is compact. These additional assumptions were removed in the PhD thesis of Santos [San23].
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Remark 1.5. Caraiani-Scholze actually proved a slightly different result. More precisely, let S be a
set of finite places not containing p such that G is unramified and Kp is hyperspecial away from
S. Consider a maximal ideal m ⊂ TS in the spherical Hecke algebra such that m is generic at p.
Caraiani-Scholze show that the localization at mp ⊂ TS∪{p} is concentrated in the relevant degrees.

Remark 1.6. In the case of Harris-Taylor Shimura varieties, there is also work of Boyer [Boy19],
which describes the localization at non-generic maximal ideals.

Remark 1.7. We believe that Conjecture 1.2 is true under the weaker hypothesis that H2(WQp , α ◦
ϕT ) is trivial for all Γ-orbits of coroots α, as is shown in [CS19; San23; Kos21] in their particular
case. However, the theory of geometric Eisenstein series which we will invoke in this paper becomes
more complicated in this case (See the discussion around [Ham22, Conjecture 1.29]), and so a proof
of this Theorem using our methods would require more deeply understanding geometric Eisenstein
series when this assumption is dropped (cf. Remark 6.8).

Caraiani-Scholze [CS17; CS19] proved their results under some small restrictions, which
Koshikawa [Kos21] was able to remove by using compatibility of the Fargues-Scholze local Langlands
correspondence with the semi-simplification of the Harris-Taylor correspondence for GLn. In the
process, Koshikawa exhibited a much more flexible method for proving Theorem 1.3. The goal of
the current paper is to expand the scope of Koshikawa’s technique, motivated by work of the first
author on geometric Eisenstein series in the Fargues-Fontaine setting [Ham22]. We then carry the
strategy out in some particular cases using work on local-global compatibility of the Fargues-Scholze
local Langlands correspondence beyond the case of GLn.

One of the basic ingredients is the perspective on Mantovan’s product formula provided by the
Hodge-Tate period morphism. To explain this, we let µ ∈ X∗(TQp

)+ denote the minuscule geometric
dominant cocharacter of G determined by the Hodge cocharacter of X and an isomorphism j :
C ≃ Qp which we fix from now on. We consider the Kottwitz set B(G) and with it the subset
B(G,µ) ⊂ B(G) of µ-admissible elements. Let p|p be the prime dividing p in the reflex field E,
induced by the embedding Q → Qp given by the isomorphism j. We let Ep be the completion at

p, C := Êp be the completion of the algebraic closure, and Ĕp be the compositum of Ep with the
completion of the maximal unramified extension of Qp. We recall that, attached to each element
b ∈ B(G,µ), there exists a diamond

Sht(G, b, µ)∞ → Spd(Ĕp)

parametrizing modifications
Eb 99K E0

of meromorphy µ between the G-bundle Eb corresponding to b and the trivial G-bundle. This space
has an action by G(Qp) = Aut(E0) and Jb(Qp) ⊂ Aut(Eb), where Jb is the σ-centralizer of b. This
allows us to consider the quotients

Sht(G, b, µ)∞/Kp → Spd(Ĕp)

for varying compact open subgroups Kp ⊂ G(Qp). In certain cases, these quotients are repre-
sentable by rigid analytic varieties called local Shimura varieties, but they are always representable
as diamonds. We can consider the compactly supported cohomology

RΓc(Sht(G, b, µ)∞,C/K
hs
p ,Fℓ)

at hyperspecial level with torsion coefficients. This has an action of WEp×Jb(Qp)×HKhs
p

. Now, the
Mantovan product formula tells us that if we look at RΓ(Sh(G, X)K,E ,Fℓ) then this should always
admit a filtration in the derived category whose graded pieces are

(RΓc(Sht(G, b, µ)∞,C/K
hs
p ,Fℓ(db))[2db]⊗H(Jb) RΓ(Ig

b,Fℓ)
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for varying b ∈ B(G,µ), where the objects are as follows.

(1) Igb is the perfect Igusa variety attached to an element b ∈ B(G,µ) in the µ-admissible locus
inside B(G) and db := dim(Igb) = ⟨2ρG, νb⟩, where ρG is the half sum of all positive roots
and νb is the slope cocharacter of b.

(2) H(Jb) := C∞c (Jb(Qp),Fℓ) is the usual smooth Hecke algebra.
(3) Fℓ(db) is the sheaf on Sht(G, b, µ)∞,C/K

hs
p with trivial Weil group action and Jb(Qp) action

as defined in [Kos21, Lemma 7.4].

Such a filtration should always exist, but is not currently proven in general. In the case that the
Shimura datum (G, X) is PEL of type A or C, a modern proof of this result can be found in [Kos21,
Theorem 7.1].

This filtration on the complex RΓ(Sh(G, X)K,E ,Fℓ) allows us to roughly split the verification of
Conjecture 1.2 into two parts.

(1) Controlling the cohomology of the shtuka spaces RΓc(Sht(G, b, µ)∞,C/Khs
p ,Fℓ(db))m.

(2) Controlling the cohomology of the Igusa varieties RΓ(Igb,Fℓ).

We first discuss point (1). One of the key observations underlying Koshikawa’s method was that the
cohomology of the space Sht(G, b, µ)∞ computes the action of a Hecke operator Tµ corresponding
to µ on BunG the moduli stack of G-bundles of the Fargues-Fontaine curve. The Hecke operators
commute with the action of the excursion algebra on BunG, and the action of the excursion algebra
on a smooth irreducible representation ρ, viewed as a sheaf on BunG, determines the Fargues-
Scholze parameter of ρ. It follows that RΓc(Sht(G, b, µ)∞,C/Khs

p ,Fℓ(db))m as a complex of smooth
Jb(Qp)-modules will have irreducible constituents ρ with Fargues-Scholze parameter ϕFSρ equal to
ϕm as conjugacy classes of parameters. When GQp = G is a product of GLns as in Theorem 1.3 (by
the assumption that p splits in F ), it follows from the work of Hansen-Kaletha-Weinstein [HKW22,
Theorem 1.0.3] that the Fargues-Scholze correspondence for Jb(Qp) with rational coefficients agrees
with the semi-simplification of the Harris-Taylor correspondence, where we recall that Jb is a product
of inner forms of GLns in this case. In particular, using that m is generic, it follows that ϕFSρ = ϕm
must lift to a Zℓ parameter which is also generic in the analogous sense, and the condition of
generic implies that the lift cannot come from the semi-simplification of a parameter with non-trivial
monodromy. Using this, one can deduce that such a ρ only exists if the group Jb is quasi-split. In
this particular case (G is a product of GLns), this can only happen if b ∈ B(G,µ) corresponds to
the ordinary element.

This argument of Koshikawa was formalized and generalized further in work of the first author
[Ham22]. In particular, it was noted that, for a general quasi-split G and m generic, the cohomology
RΓc(Sht(G, b, µ)∞,C/K

hs
p ,Fℓ(db))m will only be non-trivial if b ∈ B(G,µ)un := B(G)un ∩ B(G,µ),

where B(G)un is the set of elements lying in the image of the map B(T ) → B(G), assuming that
the Fargues-Scholze local Langlands correspondence has certain expected properties (Assumption
4.4). These unramified elements will be precisely the elements for which Jb is quasi-split. The set
B(G,µ)un corresponds to Weyl group orbits of weights in the representation Vµ of Ĝ restricted to
ĜΓ. In particular, if G is split then, since µ is minuscule, B(G,µ)un consists of only one element,
corresponding to the unique Weyl group orbit of the highest weight. This is the situation occurring
in the previous paragraph. Moreover, the contribution of the cohomology of this shtuka space is
easily understood, and the problem completely reduces to controlling the cohomology of Igb when
b ∈ B(G,µ)un is the µ-ordinary element. However, if G is not split then the restriction of Vµ to ĜΓ

may have multiple Weyl group orbits of weights. In particular, one needs to control the cohomology
groups

RΓc(Sht(G, b, µ)∞,C/K
hs
p ,Fℓ(db))m
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for all possible b ∈ B(G,µ)un. This makes the situation much more complicated; in fact, for non-
split G, the basic element could be unramified, and in this case the Igusa variety is just a profinite
set, hence the problem of torsion vanishing for the contribution of the basic locus is completely
reduced to controlling the generic part of the torsion cohomology of the local shtuka space attached
to the basic element.

Such control of the cohomology of shtuka spaces with torsion coefficients for these more gen-
eral situations was attained in [Ham22]. In order to understand this, it is helpful to move
away from the language of isotypic parts of shtuka spaces and consider the action of Hecke op-
erators on D(BunG,Fℓ), the derived category of étale Fℓ-sheaves on BunG. Since we are in-
terested in cohomology localized at a generic maximal ideal m, we construct in appendix A a
full-subcategory D(BunG,Fℓ)ϕm ⊂ D(BunG,Fℓ) together with an idempotent localization map
(−)ϕm : D(BunG,Fℓ)→ D(BunG,Fℓ)ϕm such that, on smooth irreducible representations, the local-
ization map is either an isomorphism or 0 depending on if the representation has Fargues-Scholze
parameter conjugate to ϕm or not (Lemma 4.2 (1)). We let DULA(BunG,Fℓ) denote the full subcat-
egory of ULA objects, where we recall by [FS21, Theorem V.7.1], that this is equivalent to insisting
that the restrictions to all the HN-strata indexed by b ∈ B(G) are valued in the full subcategories
Dadm(Jb(Qp),Fℓ) of admissible complexes (i.e the invariants under all open compacts K ⊂ Jb(Qp)
is a perfect complex). Using the results of [Ham22], we show, under various technical hypothesis
including the genericity of m, that one has a direct sum decomposition:

DULA(BunG,Fℓ)ϕm ≃
⊕

b∈B(G)un

Dadm(Jb(Qp),Fℓ)ϕm .

More precisely, we show that the ! and ∗ push-forwards with respect to the inclusion of HN-
strata agree on this sub-category, and so the excision semi-orthogonal decomposition splits on
DULA(BunG,Fℓ)ϕm . This decomposition is a refinement of the fact mentioned above that only the
shtuka spaces corresponding to the unramified elements b ∈ B(G,µ)un can contribute to the generic
localization of the cohomology of the Shimura variety. The desired control of the shtuka spaces is
now in turn encoded in understanding how Hecke operators interact with a perverse t-structure on
BunG after restricting to the localized category DULA(BunG,Fℓ)ϕm .

We recall D(BunG,Fℓ) has an action by Hecke operators. In particular, for each geometric
dominant cocharacter µ, we have a correspondence

HckG,≤µ

BunG BunG × Spd(C)
h←µ

h→µ

where HckG,≤µ is the stack parametrizing modifications E1 → E2 of a pair of G-bundles with
meromorphy bounded by µ at the closed Cartier divisor defined by the fixed untilt given by C, and
h→µ (resp. h←µ ) remembers E1 (resp. E2). We define

Tµ : D(BunG,Fℓ)→ D(BunG,Fℓ)BWEµ

A 7→ h→µ∗(h
←∗
µ (A)⊗L Sµ)

where Eµ denotes the reflex field of µ and Sµ is the sheaf on HckG,≤µ attached to the highest
weight tilting module Tµ ∈ RepFℓ

(Ĝ) of highest weight µ by geometric Satake. The action of Hecke
operators commutes with the action of excursion operators and therefore the action of the spectral
Bernstein center. Moreover, it preserves the subcategory of ULA objects. It follows that we have
an induced map

Tµ : DULA(BunG,Fℓ)ϕm → DULA(BunG,Fℓ)
BWEµ

ϕm

on the localized category (See Lemma 4.2 (2)).
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We are almost ready to state the result on Hecke operators we will need. To do this, we recall
that D(BunG,Fℓ) has a natural perverse t-structure, which can be defined as follows. The v-stack
BunG is cohomologically smooth of ℓ-dimension 0. Moreover, each one of the HN-strata BunbG is
isomorphic to [∗/Jb], which is cohomologically smooth of ℓ-dimension −db = −dim(Igb). Therefore,
we can define a perverse t-structure pD≥0(BunG,Fℓ) (resp. pD≤0(BunG,Fℓ)) on D(BunG,Fℓ) given
by insisting that the ! (resp. ∗) restrictions to BunbG are concentrated in degrees ≥ ⟨2ρG, νb⟩ (resp.
≤ ⟨2ρG, νb⟩). The key result that follows from the work of [Ham22] and various compatibility results
for the Fargues-Scholze correspondence is as follows.

Theorem 1.8. (Corollary 4.24) Let µ be a minuscule geometric dominant cocharacter and G a
product of groups satisfying the conditions of Table (1) with p and ℓ satisfying the corresponding
conditions. Then if m is generic the restriction of the Hecke operator

j∗1Tµ : DULA(BunG,Fℓ)ϕm → Dadm(G(Qp),Fℓ)
BWEµ

ϕm

is perverse t-exact. In particular, it induces maps

j∗1Tµ : pDULA,≥0(BunG,Fℓ)ϕm → Dadm,≥0(G(Qp),Fℓ)
BWEµ

ϕm

and
j∗1Tµ : pDULA,≤0(BunG,Fℓ)ϕm → Dadm,≤0(G(Qp),Fℓ)

BWEµ

ϕm

on the halves of the perverse t-structure, where we note that the perverse t-structure on
D(Bun1G,Fℓ) ≃ D(G(Qp),Fℓ) coincides with the usual t-structure.

Here is the table summarizing our local constraints:

(1)

G Constraint on G ℓ p

ResL/Qp
(GLn) L/Qp unramified (ℓ, [L : Qp]) = 1

ResL/Qp
(GSp4) L = Qp (ℓ, 2(p4 − 1)) = 1

L/Qp unramified (ℓ, 2[L : Qp](p
4[L:Qp] − 1)) = 1 p ̸= 2

ResL/Qp
(GU2) L/Qp unramified (ℓ, [L : Qp]) = 1

G = Un(L/Qp) n odd L unramified ℓ ̸= 2
G = GUn(L/Qp) n odd L unramified ℓ ̸= 2

G(SL2,L) L/Qp unramified (ℓ, [L : Qp]) = 1

G(Sp4,L) L/Qp unramified, L ̸= Qp (ℓ, 2[L : Qp](p
4[L:Qp] − 1)) = 1 p ̸= 2

The groups G(SL2,L) and G(Sp4,L) are the similitude subgroup of ResL/Qp
(GL2) (resp.

ResL/Qp
(GSp4)), i.e. the subgroup of elements such that the similitude factor lies in Qp. We

will recall the definition of these groups in §4.3.

Remark 1.9. Assuming the Fargues-Scholze correspondence for G behaves as expected with ratio-
nal coefficients, the analysis in [Ham22] allows one to verify this for any µ after imposing some
additional conditions on the toral parameter ϕmT attached to the maximal ideal m ([Ham22, Condi-
tion/Definition 3.6]). However, for the groups considered, we will see that these additional condi-
tions are superfluous and all one needs is generic, except for the case where G = ResL/Qp

(GSp4) or
G = G(Sp4,L) with L/Qp non-trivial, where we need an extra banality assumption on the prime ℓ.
It is conjectured ([Ham22, Conjecture 1.29]) that the results used to establish this theorem should
always be true just under the condition that m is generic.

These local torsion vanishing results would allow us to prove Conjecture 1.2 in several new cases
if one could get control over the Igusa varieties Igb. In Koshikawa’s argument, this is done by
using a semi-perversity result proven by Caraiani-Scholze [CS19, Theorem 4.6.1], which was further
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generalized in work of Santos [San23]. Roughly speaking, we want to show that RΓ(Igb,Fℓ) is
concentrated in degrees ≥ db, so that the complex of Jb(Qp)-representations RΓ(Igb,Fℓ) defines the
stalk of a semi-perverse sheaf on BunG at b ∈ B(G), to which we can apply the previous result. In
the case that the Shimura vareities Sh(G, X)K are compact, there is a simpler way of seeing this. In
particular, Igb is known to be a perfect affine scheme in this case, and so the desired semi-perversity
just follows by applying Artin vanishing and then using Poincaré duality on the global Shimura
variety. It turns out that this style of argument can be made to work even in the non-compact case.
In [CS17; CS19; Kos21; San23], the non-compactly supported cohomology RΓ(Sh(G, X)K ,Fℓ)m
is studied together with its filtration involving RΓ(Igb,Fℓ) coming from Mantovan’s formula, and
shown to be concentrated in degrees ≥ d. However, one could also study the compactly supported
cohomology RΓc(Sh(G, X)K ,Fℓ)m and show that it is concentrated in degrees ≤ d, à la Poincaré
duality. To do this, we recall [CS19, Section 3.3] that, in the non-compact case, the perfect scheme
Igb is not affine, but it admits a partial minimal compactification gb : Igb ↪→ Igb,∗ which is affine, as
proven in this more general setting of PEL type A or C by Santos [San23]. We define

Vb := RΓc−∂(Ig
b,Fℓ) := RΓ(Igb,∗, gb!(Fℓ))

the partially compactly supported cohomology, which is supported in degrees ≤ db by Artin-
vanishing (Proposition 3.7). Now, for K ⊂ G(Af ) a sufficiently small open compact, we define
S(G, X)K := (Sh(G, X)K ⊗E Ep)

ad to be the adic space over Spa(Ep) attached to the Shimura va-
riety. We can define the infinite level perfectoid Shimura varieties S(G, X)Kp by taking the inverse
limit of S(G, X)KpKp as Kp → {1}. The base-change S(G, X)Kp,C is representable by a perfectoid
space if (G, X) is of pre-abelian type, and in general it is diamond. By the results of [Sch15; Han16],
we have a Hodge-Tate period map

πHT : [S(G, X)Kp,C/G(Qp)]→ [FℓG,µ−1/G(Qp)]

recording the Hodge-Tate filtration on the abelian varieties with additional structure that
S(G, X)Kp,C parametrizes. Here FℓG,µ−1 := (GC/Pµ−1)ad is the adic flag variety attached to
the parabolic in GC given by a dominant inverse of µ and the dynamical method. We recall that
the flag variety [FℓG,µ−1/G(Qp)] admits a locally closed stratification ib : [FℓbG,µ−1/G(Qp)] ↪→
[FℓG,µ−1/G(Qp)] indexed by b ∈ B(G,µ), given by pulling the HN-stratification along the natural
map h← : [FℓG,µ−1/G(Qp)] → BunG. We will now impose the following very mild assumption in
what follows.

Assumption 1.10. Write ∂Igb,∗ ⊂ Igb,∗ for the closed complement of Igb in Igb,∗. We assume that
(G, X) is a PEL datum of type A or C such that, for all b ∈ B(G,µ), the perfect scheme ∂Igb,∗ is
empty or has codimension in Igb,∗ greater than 2.

Remark 1.11. If G is simple then it is easy to show that this assumption will be satisfied if
dim(S(G, X)Kp,C) ≥ 2, by using that the boundary of the partially minimally compactified Igusa
varieties is expressible as the Igusa varieties of Shimura varieties attached to Levis of Q-rational
parabolics of G, as we will explain in §2.2.1. Moreover, if S(G, X)Kp,C is compact then it is
automatic that ∂Igb,∗ is empty. Therefore, if G is simple, this is excluding the cases where
dim(S(G, X)Kp,C) = 1 and S(G, X)Kp,C is non-compact. There are two possibilities; either (G, X)
is the Shimura datum attached to the modular curve, or it is the Shimura datum attached to the
unitary Shimura curve (See [Zha23, Proposition 1.9]). In the latter case, we have that the connected
components are given by modular curves. In these cases, the results of [Kos21] are sufficient to prove
Conjecture 1.2.

Now, assuming this, one can show that the stalk of RπHT!(Fℓ) at a geometric point x :
Spa(C,C+) → FℓG,µ−1 which lies in the adic Newton strata FℓbG,µ−1 is given by Vb. Moreover,
if we write h←b : [FℓbG,µ−1/G(Qp)]→ [Spd(C)/Jb] ≃ BunbG for the pullback of h← to BunbG then one
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can deduce that the complex ib!i∗bRπHT!(Fℓ) is isomorphic to h←∗jb!(Vb). Therefore, by excision, we
deduce that the complex of G(Qp)×WEp-representations

h→∗ RπHT!(Fℓ) ≃ RΓc(SKp,C ,Fℓ) ≃ colimKp→{1}RΓc(SKpKp,C ,Fℓ) ≃ colimKp→{1}RΓc(Sh(G, X)KpKp,C)

has a filtration with graded pieces isomorphic to h→∗ h←∗(jb!(Vb)) for varying b ∈ B(G,µ), where h→ :
[FℓG,µ−1/G(Qp)] → [Spd(C)/G(Qp)] is the structure map quotiented by G(Qp). Here the second
isomorphism follows since taking compactly supported cohomology respects taking limits of spaces,
and the third isomorphism is a standard comparison result due to Huber [Hub96, Theorem 3.5.13].

Now, via the Bialynicki-Birula isomorphism, the flag variety [FℓG,µ−1/G(Qp)] identifies with an
open substack of HckG,≤µ for the fixed minuscule µ. In particular, under this relationship the maps
h→µ and h←µ identify with h→ and h←, and therefore we can relate the graded pieces of the excision
filtration to Hecke operators. We write

RΓc(G, b, µ) := colimKp→{1}RΓc(Sht(G, b, µ)/Kp,Fℓ(db))

for the complex of G(Qp)×Jb(Qp)×WEp-modules defined by the compactly supported cohomology
of this tower. Here Fℓ(db) is the sheaf with Jb(Qp)-action defined as in [Kos21, Lemma 7.4].

We deduce the following variant of the Mantovan product formula for the compactly supported
cohomology.

Theorem 1.12. The complex RΓc(SKp,C ,Fℓ) has a filtration as a complex of G(Qp) × WEp-
representations with graded pieces isomorphic to j∗1(Tµjb!(Vb))[−d](−d

2). More specifically, the graded
pieces are isomorphic to

(RΓc(G, b, µ)⊗L
H(Jb)

Vb)[2db].

as G(Qp)×WEp-modules.

Remark 1.13. When the Shimura variety is compact, we have that RΓc−∂(Igb,Fℓ) ≃ RΓ(Igb,Fℓ),
and this recovers precisely [Kos21, Theorem 7.1].

We now apply our localization functor (−)ϕm : D(BunG) → D(BunG)ϕm for a generic maxi-
mal ideal m to get a complex RΓc(SKp,C ,Fℓ)ϕm ∈ DULA(BunG,Fℓ)ϕm , which we view as a sheaf
on BunG by ! extending along the neutral strata. After applying RΓ(Khs

p ,−), this agrees with
RΓc(SKpKhs

p ,C ,Fℓ)m, the usual localization under the unramified Hecke algebra, which is the object
we want to study. This in turn admits a filtration by RΓ(Khs

p , (j
∗
1Tµjb!(Vb)))ϕm [−d](−d2 ). However,

now we know, by the direct sum decomposition of DULA(BunG,Fℓ)ϕm described above, that the
natural map jb!(Vb) → jb∗(Vb) is an isomorphism after applying (−)ϕm . Moreover, one only has
interesting contributions coming from the unramified elements B(G,µ)un. In particular, we can
deduce the following Corollary.

Theorem 1.14. Suppose (G, X) is a PEL datum of type A or C such that GQp is a product of
simple groups as in Table (1) with p and ℓ satisfying the corresponding conditions, the complex
RΓc(SK,C ,Fℓ)m ≃ RΓc(Sh(G, X)K,C ,Fℓ)m breaks up as a direct sum⊕

b∈B(G,µ)un

(RΓc(Sht(G, b, µ)∞,C/K
hs
p ,Fℓ(db))m ⊗L

H(Jb)
RΓc−∂(Ig

b,Fℓ))[2db]

of HKhs
p
×WEp-modules.

Remark 1.15. As we will explain more in §6.1, in the case that the unique basic element b ∈
B(G,µ)un is unramified, the contribution of the corresponding summand to middle degree coho-
mology serves as a generic fiber analogue of the description of the middle degree cohomology on the
special fiber of the integral model at hyperspecial level, as provided in [XZ17, Theorem 1.1.4].
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As a consequence, we deduce our main Theorem, by combining Theorem 1.7 with the fact that
RΓc−∂(Ig

b,Fℓ) ∈ D≤db(Jb(Qp),Fℓ), by Artin vanishing.

Theorem 1.16. Suppose (G, X) is a PEL datum of type A or C such that GQp is a product of
simple groups as in Table (1) with p and ℓ satisfying the corresponding conditions then Conjecture
1.2 is true.

Remark 1.17. This notably allows one to relax the assumption in [CS17; CS19; Kos21; San23] that
the prime p splits in F , answering a question of Caraiani.

We can also easily deduce the result for some abelian type Shimura varieties, such as Hilbert
modular varieties, from the above result, which recovers work of Caraiani-Tamiozzo [CT21] (See
Corollary 5.3).

Corollary 1.18. Suppose (G, X) is an abelian-type Shimura datum which has an associated PEL-
type datum (G1, X1) of type A or C such that G1,Qp is a product of simple groups as in Table (1)
with p and ℓ satisfying the corresponding conditions. Then Conjecture 1.2 is true.
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Notation

• Fix distinct primes ℓ ̸= p.
• We write Qp for the p-adic numbers, and Q̆p for the completion of the maximal unramified

extension with Frobenius σ.
• We let Fℓ denote the algebraic closure of the finite field Fℓ. We fix a choice of square root of
p in Fℓ and define all half Tate twists and square roots of the norm character with respect
to this choice.
• For L/Qp a finite extension, we write L̆ := LQ̆p for the compositum of L with the maximal

unramified extension and WL for the Weil group of L. We let WDL := WL × SL(2,Qℓ)
denote the Weil-Deligne group of L.
• We let A (resp. Af ) denote the adeles (resp. finite adeles) over Q.
• A pair (G, X) will denote a Shimura datum. We will use E to denote the reflex field.

For K ⊂ G(Af ) a sufficiently small open compact, we write Sh(G, X)K → SpecE for the
attached Shimura variety of level K.
• We fix an isomorphism j : Qp

≃−→ C. Consider the induced embedding Q→ Qp this gives a
finite place p of E. We write Ep for the completion at p.
• We let C := Êp be the completed algebraic closure of Ep.
• We use the symbol G to always denote a connected reductive group over Qp, usually taken

to be GQp . We will always assume that G is quasi-split with a fixed choice T ⊂ B ⊂ G of
maximal torus and Borel, respectively.
• If G is unramified then we let Khs

p ⊂ G(Qp) be a choice of hyperspecial subgroup. We set
HKhs

p
:= Fℓ[Khs

p \G(Qp)/K
hs
p ] to be the unramified Hecke algebra with Fℓ-coefficients.
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• We let X∗(TQp
)+ denote the set of geometric dominant cocharacters of G and let X∗(TQp

)+/Γ

denote the set of Galois orbits, where Γ := Gal(Qp/Qp).
• Let B(G) := G(Q̆p)/(g ∼ hgσ(h)−1) denote the Kottwitz set of G.
• For b ∈ B(G), we write Jb for the σ-centralizer of b.
• For µ ∈ X∗(TQp

)+, we let B(G,µ) be the µ-admissible locus (as defined in [RV14, Defini-
tion 2.3]).
• Let Perf denote the category of affinoid perfectoid spaces in characteristic p over ∗ :=
Spd(Fp) endowed with the v-topology. For a perfectoid space S, let PerfS denote the
category of affinoid perfectoid spaces over the tilt S♭.
• For S ∈ Perf, let XS denote the relative schematic Fargues-Fontaine curve over S.
• For Spa (F,OF ) ∈ Perf a geometric point, we will often drop the subscript on XF and just

write X for the associated Fargues-Fontaine curve.
• For b ∈ B(G), we write Eb for the associated G-bundle on X.
• For S ∈ Perf, we let E0 denote the trivial G-bundle on XS .
• To a diamond or v-stack X over ∗, we write D(X,Fℓ) for the category of étale Fℓ-sheaves,

as defined in [Sch18]. We let DULA(X,Fℓ) denote the full subcategory of ULA sheaves over
∗.
• For an Artin v-stack X and Λ ∈ {Fℓ,Zℓ,Qℓ}, we write D■(X,Λ) for the condensed ∞-

category of solid Fℓ-sheaves on X, and write Dlis(X,Λ) ⊂ D■(X,Λ) for the full sub-category
of Λ-lisse-étale sheaves, as defined in [FS21, Chapter VII].
• If X is an Artin v-stack ([FS21, Definition IV.V.1]) admitting a separated cohomologically

smooth surjection U → X from a locally spatial diamond U such that the étale site has
a basis with bounded ℓ-cohomological dimension (which will always be the case for our
applications) then we will regard D(X,Fℓ) as a condensed ∞-category via the identification
Dlis(X,Fℓ) ≃ D(X,Fℓ) when viewed as objects in D■(X,Fℓ) [FS21, Proposition VII.6.6].
• We let Ĝ denote the Langlands dual group of G with fixed splitting (T̂ , B̂, {Xα}).
• If E denotes the splitting field of G then the action of WQpon Ĝ factors through Q :=

WQp/WE . We let LG := Ĝ⋊Q denote the L-group.
• For I a finite index set, we let RepFℓ

(LGI) (resp. RepFℓ
(ĜI)) denote the category of finite-

dimensional algebraic representations of LGI (resp. ĜI) over Fℓ.
• For µ ∈ X∗(TQp

)+, we write Vµ ∈ RepFℓ
(Ĝ) (resp. Tµ ∈ RepFℓ

(Ĝ)) for the usual highest
weight representation (resp. highest weight tilting module, as in [Don93]) of highest weight
µ.
• To any condensed∞-category C, we write CBW

I
Qp for the category of objects with continuous

W I
Qp

-action, as defined in [FS21, Section IX.1].
• For any separated v-stack, X → Spa(K,OK) where Spa(K,OK) is a non-archimedean field,

we write X for the canonical compactification of X with respect to the structure map
([Sch18, Proposition 18.6], [Hub96, Theorem 5.15]).
• For a reductive group H/Qp, we write D(H(Qp),Fℓ) for the unbounded derived category of

smooth Fℓ-representations.
• For an analytic adic space X, we will often abuse notation and use X to also denote the

diamond X⋄ attached to it (as defined in [SW20, Lecture X]).

2. Preliminaries on Shimura Varieties

In this section we will recall some facts about Shimura varieties which we will need later in this
paper.

2.1. Shimura Varieties. We will mainly work with the following two types of Shimura varieties.
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2.1.1. PEL type A and C. Let (OB, ∗, L, ⟨·, ·⟩) be an integral PEL datum, where B is a finite-
dimensional semisimple Q-algebra, ∗ is a Q-linear involution of B, with fixed field F , OB is a
∗-stable Z-order of B, L is a lattice with OB-actions, and ⟨·, ·⟩ : L× L→ Z(1) is a non-degenerate
alternating form such that ⟨bv, v′⟩ = ⟨v, b∗v′⟩, for all b ∈ OB and v, v′ ∈ L.

To our integral PEL datum, we have the following group scheme G over Z whose R-points, for
each Z-algebra R, are given by

G(R) := {(g, r) ∈ EndOB⊗ZR(L⊗Z R)×R|⟨gv, gw⟩ = r⟨v, w⟩ for all v, w ∈ L⊗Z R}.

The PEL data is of type A if (B⊗F F , ∗) is isomorphic to End(W )×End(W )op with (a, b)∗ = (b, a)
for some vector space W . The PEL data is of type C if (B ⊗F F , ∗) is isomorphic to End(W ) with
∗ being the adjoint map with respect to a symmetric bilinear form on W . We will assume from now
on that we are in one of these cases.

We now further assume the data is unramified at p; namely, that each term in the decomposition
BQp =

∏
p|pB⊗F Fp is a matrix algebra over an unramified extension of Qp. We will thus moreover

assume that OB ⊗Zp is a maximal order in BQp , and L is self-dual after localization at p. This can
be arranged following [Lan13, Remark 1.3.4.8]. Note that these conditions equivalently ensure that
the group G is unramified.

We will now briefly discuss what conditions we may need to impose on the prime p so that the
form of the local group G satisfies the conditions in Table (1). Firstly, suppose we are in type A.
Then the center Z(B) = Fc is a quadratic imaginary extension of F . Let n be the OB rank of L.
Observe that we will need to assume that the prime p satisfies for all primes p of F above p,

(1) p is split in Fc; or
(2) Fp = Qp, and n is odd.

These conditions imply that G will be a similitude subgroup of
∏

pGp where Gp is either
ResFp/Qp

(Gm ×GLn) or GUn for an odd unitary group over Qp2 .
Now suppose we are in type C. Since the PEL data is unramified at p, we see that B ⊗F Fp is

indefinite for all primes p of F above p, and thus G will be a similitude subgroup of∏
p

ResFp/Qp
(GSp2n).

Here, we will need to assume that the rank n of L as an OB lattice is either 1 or 2 to satisfy the
conditions in Table (1).

Both types of Shimura varieties will be moduli spaces of abelian varieties with extra structures,
which we will briefly describe. Let Kp ⊂ G(Apf ) be an open compact subgroup. To any PEL data,
the Shimura variety S(G, X)K over OEp is the scheme which represents the functor that associates
to each locally Noetherian scheme S over OEp the set of isomorphism classes of tuples (A, λ, ι, ηp)
consisting of

(1) An abelian scheme A/S of dimension n[F : Q] up to prime to p-isogeny,
(2) A prime-to-p polarization λ : A→ A∨,
(3) An embedding ι : OB ⊗ Z(p) ↪→ End(A)⊗Z Z(p) of Z(p)-algebras such that

λ ◦ ι(b∗) = ι(b)∨ ◦ λ,

(4) A section ηp ∈ Γ(S, IsomB(L⊗ZApf , V̂ (A)p)/Kp), where IsomB(L⊗ZApf , V̂ (A)p) is the étale
torsor of isomorphisms that maps ⟨, ⟩ to a Ap×f multiple of the pairing on V̂ (A)p defined by
the Weil pairing,

satisfying the Kottwitz determinant condition that det(b|Lie(A)) = det(b|V −1,0) as polynomial
functions on OB, where V = L⊗Q and VC = V −1,0 ⊕ V 0,−1 is the Hodge decomposition.
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2.1.2. Compactifications. We will now recall some constructions from the theory of toroidal com-
pactifications of PEL type Shimura varieties from [Lan13]. To match the setting in [Lan13], we will
moreover assume from now on that the level structure K is a principal congruence subgroup for
some N ≥ 3, namely

K = K(N) = {g ∈ G(Ẑ)|g ≡ 1 (mod N)}.
We first recall the definition of a split, symplectic and admissible filtration from [Lan13, §5.2.1].

Let R be a commutative ring.

Definition 2.1. A split, symplectic and admissible filtration on L⊗Z R is a two-step filtration on
L⊗Z R by (OB ⊗Z R)-submodules, i.e. we have

0 = Z−3 ⊂ Z−2 ⊂ Z−1 ⊂ L⊗Z R,

such that if we put GrZ−i = Z−i/Z−i−1 for 0 ≤ i ≤ 2, and GrZ = ⊕0≤i≤2GrZ−i, we have

(1) GrZ−i is isomorphic to M ⊗Z R for some OB-lattice M
(2) There is some isomorphism of OB-lattices

L⊗Z R ≃ GrZ

(3) Z−2 and Z−1 are annihilators of each other under the pairing ⟨, ⟩ induced from L.

Definition 2.2. Let M be a finite B-module. Since B ≃
∏
iBi where each Bi is simple, we have

a decomposition M ≃ Mmi
i where Mi is the unique simple left Bi-module. We call the tuple (mi)

the B-multi-rank of M .

Let R = Ẑ and suppose that we have a split symplectic admissible filtration Z = Z• as above.

Definition 2.3. A torus argument Φ for Z is a tuple Φ = (X,Y, ϕ, φ−2, φ0), where
(1) X and Y are OB-lattices of the same B-multi-rank, and ϕ : Y ↪→ X is an OB-linear

embedding
(2) We have isomorphisms φ−2 : GrZ−2 ≃ HomR(X ⊗Z R,R(1)) and φ0 : GrZ0 ≃ Y ⊗Z R such

that the pairing ⟨, ⟩20 : GrZ−2×GrZ0 → R(1) is the pullback under these isomorphisms of the
pairing

⟨·, ·⟩ϕ : HomR(X ⊗R,R(1))× (Y ⊗R) id×ϕ−−−→ HomR(X ⊗R,R(1))× (X ⊗R)→ R(1),

where the last arrow is the tautological pairing.

We thus define a cusp label as a pair (Z,Φ), where Z is a split symplectic admissible filtration
on L ⊗Z Ẑ, and Φ is a torus argument for Z. Note that this is the generalization of the cusp
labels (Z,X) considered in [CS19, §2.5.2], as for the PEL type A Shimura data they considered,
the assumption of principal polarization means we can set X = Y , and the torus argument Φ is
determined by the OF -isomorphism.

There is an action of G(Af ) on pairs (Z,Φ), as defined in [Lan13, §5.4.3], and we define a cusp
label at level K to be a K-orbit of pairs (Z,Φ).

To each cusp label (Z,Φ), we can associate a split torus EΦ over Z, as constructed by Lan in
[Lan13, §6.4]. Let SΦ = X∗(EΦ). Let S∨Φ := HomZ(SΦ,Z) be the Z-dual of SΦ, and let (SΦ)

∨
R :=

S∨Φ⊗ZR. The R-vector space (SΦ)
∨
R is isomorphic to the space of Hermitian pairings |·, ·| : (Y ⊗R)×

(Y ⊗ R)→ OB ⊗ R by sending a Hermitian pairing |·, ·| to the function y ⊗ ϕ(y′) 7→ TrB/Q(|y, y′|)
in HomZ(SΦ,R) (c.f. [Lan13, §6.2.5]).

Thus, we have an R-vector space (SΦ)
∨
R of Hermitian pairings, and we define PΦ to be the

subset of (SΦ)∨R corresponding to positive semi-definite Hermitian pairings with admissible radicals
(see [Lan13, Definition 6.2.5.4] and subsequent discussion for the precise definition of admissible
radical). PΦ will a rational polyhedral cone in (SΦ)

∨
R. Moreover, to every torus argument Φ we can
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also associate a stabilizer group ΓΦ. We thus let ΣΦ be a ΓΦ-admissible rational polyhedral cone
decomposition of PΦ, as in [Lan13, Definition 6.1.1.14].

From now on, we will assume that we have fixed a compatible choice of admissible smooth rational
polyhedral cone decomposition data (rpcd) Σ for K; namely, we have

(1) A complete set of representatives (Z,Φ) of cusp labels at level K,
(2) A ΓΦ -admissible smooth rational polyhedral cone decomposition ΣΦ for each cusp (Z,Φ)

so that the cone decompositions are pairwise compatible.

The precise definition and proof of existence of such smooth admissible rpcd is [Lan13, §6.3.3.2,
§6.6.3.3]. Associated to this admissible smooth rpcd, we have a toroidal compactification of
S(G,X)K , as in the following theorem of Lan [Lan13, Theorem 6.4.1.1].

Theorem 2.4. To each compatible choice Σ = {ΣΦ} of admissible smooth rational polyhedral
cone decomposition data, there is an associated proper smooth algebraic scheme S(G,X)torK over
OE,p containing S(G,X)K as an open dense subscheme, together with a semiabelian family A over
S(G,X)torK . Moreover, we have a stratification

S(G,X)torK =
∐
(Φ,σ)

Z(Φ,σ),

where σ is a face of PΦ.

Finally, observe that there is a cusp label corresponding to taking the filtration Z−2 = 0, Z−1 =
L⊗ R, and the torus argument X = Y = 0. This trivial cusp label will correspond to the original
Shimura variety S(G,X)K in the stratification above.

2.2. Igusa Varieties. We fix now some b ∈ B(G,µ), and consider a geometric point x ∈
S(G, X)K(Fp) lying in the Newton strata for b. This corresponds to some abelian variety Ax,
which has p-divisible group with G-structure X := Ax[p∞] given by b. Up to replacing x by another
element in its isogeny class, we can assume X is completely slope divisible. Thus, we can write
X = ⊕ri=1Xi, where the Xi are isoclinic p-divisible groups of strictly decreasing slopes.

We consider the following subset

CX := {x ∈ S(G, X)K,Fp
: ∃ isomorphism ρ : Ax[p∞]× k(x) ≃ X× k(x) preserving G-structure},

where we denote by S(G, X)K,Fp
the (geometric) special fiber of S(G, X)K . This turns out to

be a closed subset of S(G, X)K,Fp
, and thus we can give this subset the induced reduced scheme

structure. We will continue to denote the associated scheme by CX, and it turns out this scheme is
smooth.

Let G be the p-divisible group of the restriction to CX of the universal abelian variety over
S(G, X)K . We further define Igb as the scheme over CX parametrizing, for any perfect CX-scheme
T , isomorphisms G ×CX T ≃ X×Fp

T which preserve G-structure. Equivalently, we can define Igb

as the functor sending an Fp-algebra R to the set

(2) Igb(R) = {(ρ, x) : x ∈ S(G, X)K(R), ρ : Ax[p∞]
∼−→ XR preserving G-structure}.

By [CS17, Corollary 4.3.5], we know that this scheme is perfect, and hence it lifts uniquely to a flat
p-adic formal scheme, which we denote by Igb over Spf(W (Fp)).

We write IgbC for the perfectoid space attached to the adic generic fiber of Igb over C. These
spaces are supposed to model the fibers of the Hodge-Tate period morphism, a connection we will
elaborate upon in §3.
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2.2.1. Compactifications. In order to understand (partial) minimal and toroidal compactifications
of Igb, we must first consider compactifications of the central leaf CX. As in the discussion in [CS19,
§3.1], the central leaf CX is a well-positioned subset of S(G, X)K,Fp

, and thus admits partial toroidal
and minimal compactifications, which we will denote by C tor

X and C ∗X respectively. Moreover, let Z
be a cusp label at level K(N). This determines a locally closed boundary stratum CX,Z ⊂ C tor

X .
The Igusa variety Igb over CX extends to a perfect scheme Igb,tor over C tor

X . More precisely, we
can define Igb,tor as follows. Let A denote the universal semi-abelian scheme over C tor

X . This is the
restriction to C tor

X of the universal semi-abelian scheme over S(G, X)K,Fp
. Then, we know from

[CS19, Proposition 3.2.1] that the connected part A[p∞]◦ of A[p∞] is a p-divisible group. Moreover,
if we denote by A[p∞]µ the multiplicative part, then this is also a p-divisible group. We thus let
A[p∞](0,1) = A[p∞]◦/A[p∞]µ be the biconnected part. We can similarly define X◦,X(0,1) as the
connnted and biconnected parts of X.

Thus, we can define Igb,tor to be the scheme which, for a perfect C tor
X -scheme T , parametrizes

OB -linear isomorphisms ρ : A[p∞]◦ ×C tor
X

T
∼−→ X◦T and a scalar in Z×p (T ) such that the induced

isomorphism ρ(0,1) : A[p∞](0,1) ×C tor
X

T
∼−→ X(0,1)

T obtained by quotienting by the multiplicative
parts commutes with the polarizations up to the given element of Z×p (T ). Here, Z×p (T ) is the set
of T -points of the group scheme Z×p × C tor

X .
Finally, we define the partial minimal compactification Igb,∗ as the normalization of C ∗X in Igb.

Since we have Igb ⊂ Igb,∗, Igb,tor, we will denote the boundaries by ∂Igb,∗ and ∂Igb,tor, respectively.
These schemes are all perfect, and we can lift them to p-adic formal schemes over Spf(W (Fp)). We
similarly denote by Igb,∗C , Igb,torC , ∂Igb,∗C , and ∂Igb,torC the associated perfectoid spaces over C.

2.2.2. Igusa Cusp Labels. In order to understand the boundary components ∂Igb,∗ and ∂Igb,tor, we
will recall the notion of Igusa cusp labels, as in [San23, Definition 3.2.19] (which we have slightly
modified to match the definition of cusp labels previously introduced). We let Xb := X be the
completely slope divisible p-divisible group attached to b defined above. We reintroduce b in the
notation to emphasise that all constructions here depend on b. Finally, observe that, since from
the moduli problem the polarization on Ax is prime-to-p, the p-divisible group Xb = Ax[p∞] is
principally polarized.

Definition 2.5. We define an Igusa cusp label as a tuple (Zb, Z
p, X, Y, ϕ, φ0, φ−2, φ̃0, δb) where

(1) Zb is an OB -stable filtration of Xb by p-divisible subgroups of the form

0 = Zb,−3 ⊂ Zb,−2 ⊂ Zb,−1 ⊂ Xb,

where GrZb
−2 = Zb,−2 is multiplicative, and GrZb

0 = Xb/Zb,−1 is étale, and Zb,−1, Zb,−2 are
Cartier dual to each other under the principal polarization on Xb.

(2) δb is an OB-linear isomorphism

δb : GrZb ≃ Xb
(3) Zp is an OB -stable split, symplectic and admissible filtration

0 = Zp−3 ⊂ Z
p
−2 ⊂ Z

p
−1 ⊂ L⊗Z Ẑp

(4) X,Y are OB-lattices of the same B-multirank, together with an OB-linear embedding ϕ :
Y ↪→ X, and we have isomorphisms

φ0 : Y ⊗Z Ẑp ≃ GrZ
p

0

φ−2 : Hom(X ⊗Z Ẑp, Ẑp(1)) ≃ GrZ
p

−2

φ̃0 : Y ⊗ (Qp/Zp) ≃ GrZb
0
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such that the pairing ⟨, ⟩20 : GrZ
p

−2×GrZ
p

0 → Ẑp(1) induced from the one on L is the pullback
via φ−2, φ0 of the one defined on X,Y .

There is an action of Jb(Qp)×G(Apf ) on Igusa cusp labels. If K ⊂ Jb(Qp)×G(Apf ) is a compact
open subgroup then an Igusa cusp label at level K is a K-orbit of Igusa cusp labels. For a general
closed subgroup H ⊂ Jb(Qp)×G(Apf ), an Igusa cusp label at level H is a compatible family of Igusa
cusp labels at level K for all K ⊃ H.

2.2.3. Boundary components. We can decompose the boundary ∂Igb,tor according to Igusa cusp
labels of prime-to-p level Kp(N), in the following way. For every positive integer m, there is a level
pm-Igusa variety Igbm, defined as in [CS17, Definition 4.3.6], and we let Γm,b-denote the Galois group
of the finite étale cover Igbm → CX. We also have a toroidal extension of Igbm to a level pm-Igusa
variety Igb,torm , as defined in [CS19, Definition 3.2.5]. We let Γb(p

m) := ker(Aut(X) → Γm,b), and
note that if we let K = Γb(p

m)Kp(N) then such Igusa cusp labels at level K have the same data
as triples (Zm,b, Z,Φ), where Z = (Z,Φ) is a cusp label as level K(N), and Zm,b is an OB-filtration
on Xb[pm] together with an isomorphism X/pm ≃ Gr

Zm,b

0 . In particular, we can consider the locally
closed boundary stratum CX,Z , and the pm-Igusa variety Igb,torm,Z which is the preimage of CX,Z .
Moreover, from [San23, Theorem 3.2.22], we see that we have a decomposition

Igb,torm,Z =
∐
Z̃m

Igb,tor
m,Z̃m

,

where Z̃m denotes Igusa cusp labels of level Γb(pm)Kp(N) lying over Z.
Now, let Z̃ denote an Igusa cusp label of level Kp(N). This is by definition a compatible system

{Z̃m} of Igusa cusp labels for Γb(p
m)Kp(N), for all positive integers m. We can thus define

Igb,tor
Z̃

= lim←
m

Igb,tor
m,Z̃m

.

For later use, we will want to have a moduli description of points in Igb,tor
Z̃

. We first recall some
facts about degenerations of abelian schemes, from [Lan13, §3.4] and [CS19, §2.5.1]. Let C ′ be a
complete algebraically closed nonarchimedean field with ring of integers OC′ . Consider a polarized
abelian variety (A, λ) over C ′ with OB-structure, and a degeneration A of A over OC′ . Then this
uniquely determines a short exact sequence

0→ T → G → B → 0

where T is a torus, B is an abelian scheme overOC′ , and G is the Raynaud extension. LetX = X∗(T ),
which is a free abelian group over OC . The lattice X has an action of OB, and so does B. Then,
G determines, and is uniquely determined by, an OB-linear map c : X → B∨. Similarly, we can
consider a degeneration A∨ over OC′ of the dual A∨/C ′, which gives us a short exact sequence

0→ T∨ → G∨ → B∨ → 0,

and if we similarly let Y = X∗(T∨) = X∗(T ), the extension G determines, and is uniquely determined
by an OB-linear map c∨ : Y → B.

Moreover, the polarization G → G∨ determines and is uniquely determined by the data of the
polarization on B, and an injective OB-linear map ϕ : Y → X.

Given Z̃, an Igusa cusp label of level Kp(N), we want to understand the (C,OC)-valued points
of Igb,tor which specialize to points in Igb,tor

Z̃
. In particular, note that the data of the Igusa cusp

label means we have fixed an OB-stable filtration

0 = Zb,−3 ⊂ Zb,−2 ⊂ Zb,−1 ⊂ Xb,
as well as a OB -linear splitting δb of this filtration. From the proof of [San23, Theorem 4.3.10], we
see that (C ′,OC′)-valued points are hence given by the following data:
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(1) A polarized abelian variety B over OC′ with OB-action,
(2) An OB -linear extension

0→ T → G → B → 0

where X∗(T ) = X; equivalently, an OB -linear map c : X → B∨.
(3) An OB-linear isomorphism

ρ : G[p∞] ≃ Zb,−1
that is compatible with the identification T [p∞] = Zb,−2. By the splitting δb, this induces a
splitting of

0→ T [p∞]→ G[p∞]→ B[p∞]→ 0,

and in particular c extends to a map c : X[1/p]→ B∨.
(4) An OB -linear extension

0→ T∨ → G∨ → B∨ → 0

where X∗(T ) = Y . Equivalently, an OB -linear map c∨ : Y → B. By the splitting δb, as well
as by duality (using that G[p∞] and B[p∞] will be principally polarized), we have a splitting
of

0→ T∨[p∞]→ G∨[p∞]→ B∨[p∞]→ 0

and in particular we extend c∨ to a map c∨ : Y [1/p]→ B.
(5) An OC′ -point of P ′ΣΦ

whose special fibre lies in the boundary. Here, we note that away
from the boundary we have a torsor P ′ over OC′ for the torus EΦ with character group SΦ,
parametrizing lifts of c∨ to ι : Y [1/p]→ G. P ′ΣΦ

⊃ P ′ is the torus embedding defined by the
admissible rational polyhedral cone decomposition ΣΦ for the cusp (Z,Φ).

3. Mantovan’s Formula and the Hodge-Tate Period Morphism

For K ⊂ G(Af ) a sufficiently small open compact, we define SK := (Sh(G, X)K ⊗E Ep)
ad to

be the adic space over Spa(Ep) attached to the Shimura variety. When K = Khs
p K

p with Khs
p a

hyperspecial subgroup, the space SK has a canonical integral model SK over OE,p. Let S◦K ⊂ SK
be the good reduction locus, i.e. the open subspace of SK obtained from the adic generic fiber of
the p-adic completion S∧K of the scheme SK . We define S◦K′ ⊂ SK′ for K ′ ⊂ K by taking the
preimage under the natural map from SK′ to SK . We also consider the adic spaces S∗K and StorK
attatched to the minimal and toroidal compactification of the Shimura variety S∗K .

Associated to the G(R)-conjugacy class X, we have a minuscule cocharacter µ of GC which is
defined over Ep. Let FℓG,µ−1 be the flag variety over Spa(C) associated to µ−1 the dominant inverse
of µ. Since µ is minuscule, via the Bialynicki-Birula isomorphism, when viewed as a diamond the
flag variety FℓG,µ−1 represents the following functor on PerfC . Given any S ∈ PerfC , FℓG,µ−1(S)
is the set of modifications of vector bundles E 99K E0 of meromorphy µ on XS , the relative Fargues-
Fontaine curve over S, such that the modification occurs over the untilt of S corresponding to the
map S → Spd(C).

Let

S◦Kp := lim←
Kp

S◦KpKp
⊂ SKp := lim←

Kp

SKpKp ⊂ StorKp := lim←
Kp

StorKpKp
→ S∗Kp := lim←

Kp

S∗KpKp

be the associated perfectoid Shimura varieties. We also consider S◦Kp,C , the canonical compactifica-
tion of the good reduction locus. This will be a subspace of SKp,C , since SKp,C is partially proper.
Caraiani-Scholze [CS17, §2.1] consider the Hodge-Tate period morphism on SKp

πHT : SKp,C → FℓG,µ−1 ,

which records the relative position of the Hodge-Tate filtration associated with the p-divisible group.
This extends [CS19, §4.1] to a Hodge-Tate period morphism on the minimal compactification

π∗HT : S∗Kp,C → FℓG,µ−1
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and toroidal compactification
πtorHT : StorKp,C → FℓG,µ−1 .

We write π◦HT for the restriction to the good reduction locus, and π◦HT for the canonical compacti-
fication of π◦HT, where we note that this again maps to FℓG,µ−1 as this is proper over Spa(C).

These maps have the following properties:
(1) π∗HT and πtorHT are partially proper and qcqs; hence, proper.
(2) πHT and π◦HT are partially proper, but not always qcqs.
(3) π◦HT is qcqs, but not partially proper.

With these properties in mind, let us study the fibers of these maps. For our purposes, we will focus
on the compactly supported cohomology of SKp,C and in turn the sheaf RπHT!(Fℓ) on FℓG,µ−1 .

Remark 3.1. We note that it is always true that the compactly supported cohomology at infinite level
is the colimit of the compactly supported cohomology at finite levels, but, for usual cohomology one
needs to assume the spaces are qcqs for this to be true (e.g the tower defined by the good reduction
locus or the minimal/toroidal compactifications).

Our goal is to describe the stalks of RπHT!(Fℓ) at a geometric point x : Spa(C,C+)→ FℓG,µ−1 .
We assume the geometric point x factors through the adic Newton strata FℓbG,µ−1 for b ∈ B(G,µ),
and choose a completely slope divisible p-divisible group Xb over Fp corresponding to b ∈ B(G,µ).
Let Igb be the associated perfect Igusa variety as defined in §2.2, with toroidal compactification
Igb,tor and minimal compactification Igb,∗. Recall that we have associated perfectoid Igusa vari-
eties, IgbC , Ig

b,tor
C , Igb,∗C , which should model the fibers of π◦HT, πtorHT, and π∗HT, respectively. We let

∂Igb,∗C and ∂Igb,torC be the Zariski closed subspaces attached to the boundaries ∂Igb,∗ and ∂Igb,tor,
respectively.

Let gb : Igb ↪→ Igb,∗ be the natural open immersion of Fp-schemes. We define the partially
compactly supported cohomology

RΓc−∂(Ig
b,Fℓ) := RΓ(Igb,∗, gb!(Fℓ)).

Our goal is to show that this computes the fibers of RπHT!(Fℓ) for geometric points in FℓbG,µ−1 .
To get a clearer picture of how these spaces interact with each other, we have the following

theorem.

Theorem 3.2. [CS19; San23] There exists a diagram of spaces of the form

(π◦HT)
−1(x) π−1HT(x) (πtorHT)

−1(x) (π∗HT)
−1(x)

IgbC Igb,torC , Igb,∗C

i tori ∗i

where the maps i, ∗i, and tori are open immersions whose image contains all rank 1 points. Moreover,
the fibers (π∗HT)

−1(x) and (πtorHT)
−1(x) are partially proper, so in particular ∗i and tori are canonical

compactifications in the sense of [Sch18, Proposition 18.6].

Proof. This theorem in the case where (G, X) is of PEL type A attached to a globally quasi-split
unitary group of even dimension is [CS19, Theorems 2.7.2, Theorem 4.5.1], and the general case of
PEL type A or C is proven in [San23, Theorems 4.3.10, 4.3.12]. □

We will also combine this with the following result.
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Theorem 3.3. [CS19; San23] The partially minimally compactified Igusa variety Igb,∗ is affine; in
particular, the attatched adic space Igb,∗C is affinoid perfectoid. Moreover, there exists a proper map

Igb,torC → Igb,∗C

which induces an isomorphism on global sections.

Proof. For the affineness, the case of PEL type A attached to a global quasi-split unitary group of
even dimension is covered by [CS19, Theorem 1.7] and [CS19, Lemma 4.5.2]. The general case of
PEL type A or C is covered in [San23, Lemma 3.3.7]. To see the properness, we note that the map

Igb,torC → Igb,∗C

is the one appearing in the Stein factorization described in [CS19, Proposition 3.3.4] and [San23,
Proposition 3.3.5]. This also shows that one has an isomorphism on global sections. □

We will also need the following Corollary.

Corollary 3.4. The boundary ∂Igb,torC is quasi-compact and ∂Igb,∗C is affinoid perfectoid (In partic-
ular, quasi-compact).

Proof. The fact that Igb,∗C is affinoid perfectoid follows from the previous Theorem. Moreover, ∂Igb,∗C
is a Zariski closed subspace, since it came from considering the adic generic fiber of a formal model
of the perfect closed subscheme ∂Igb,∗ ⊂ Igb,∗. The claim for the toroidal compactification follows
since the map Igb,torC → Igb,∗C is proper, and maps the boundary ∂Igb,torC to ∂Igb,∗C . □

It is natural to wonder how one could describe the fiber of πHT in terms of the spaces described
above. In particular, we now deduce the following Corollary.

Corollary 3.5. For x : Spa(C,C+)→ FℓbG,µ−1 a geometric point, we have isomorphisms

π−1HT(x) ≃ Ig
b,∗
C \ ∂Ig

b,∗
C ≃ Ig

b,tor
C \ ∂Igb,torC

induced by the natural open immersions π−1HT(x) ↪→ (π∗HT)
−1(x) ≃ Ig

b,∗
C (resp. π−1HT(x) ↪→

(πtorHT)
−1(x) ≃ Ig

b,tor
C ), as given by Theorem 3.2. Here ∂Igb,∗C (resp. ∂Igb,torC ) is the Zarisiki closed

subset of Igb,∗C (resp. Ig
b,tor
C ) defined by the canonical compactification of the boundaries ∂IgbC ⊂ IgbC

(resp. ∂Igb,torC ⊂ Igb,torC ).

Proof. We first establish the claim for the toroidal compactification. We consider the closed immer-
sion

Ig
b,tor
C ×Stor

Kp,C
∂StorKp,C ↪→ ∂Ig

b,tor
C

obtained by base-changing the closed immersion ∂StorKp,C ↪→ StorKp,C to the fiber (πtorHT)
−1(x) and

applying Theorem 3.2. To show the desired claim, it suffices to show this is an isomorphism. Note
that both the LHS and RHS are partially proper; therefore, to show this is an isomorphism, it
suffices to show it induces an isomorphism on rank 1 points. In particular, given C ′/C a complete
algebraically closed non-archimedean field, we claim that there exists a Cartesian diagram of the
form

∂Igb,torC (C ′,OC′) Igb,torC (C ′,OC′)

∂StorKp,C(C
′,OC′) StorKp,C(C

′,OC′)

.

This can be checked using the moduli interpretation, as in the proof of [CS19, Theorem 4.4.1]. In
particular, given a Spa(C ′,OC′) point of Igb,torC specializing to a boundary component indexed by
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an Igusa cusp label Z̃ (See §2.2.2 for the definition of Igusa cusp label), then from the discussion in
§2.2.3 this corresponds to the datum of (B,G,G∨, ρ, y), where

(1) B is an abelian scheme over OC′ with polarization, and OB-structure,
(2) G is a Raynaud extension

0→ T → G → B → 0

of B by a torus T with cocharacter group X,
(3) G∨ is a Raynaud extension

0→ T∨ → G∨ → B∨ → 0

of B∨ by a torus T∨ with cocharacter group Y ,
(4) ρ is an OB-linear isomorphism ρ : G[p∞] ≃ Zb,−1, extending the isomorphism T [p∞] ≃ Zb,−2,
(5) y ∈ PΣΦ

(OC′), where PΣΦ
is the toroidal compactification (determined by an admissible

rpcd ΣΦ, as in §2.1.2) of a torsor under a torus EΦ/OC′ , whose character group is given by
SΦ, and y is a point whose special fiber lies in the boundary.

The natural map Igb,tor(C ′,OC′) ↪→ StorKp,C(C
′,OC′) is determined by forgetting the trivialization

ρ : Zb,−1 ≃ G[p∞]. The image under this map of a point lying in the boundary ∂Igb,torC is equivalent
to insisting that y is a point whose special fiber lies in the boundary of PΣΦ

for some Igusa cusp
label Z̃, which is not the trivial one. Let Z = (Z,Φ) be the cusp label which Z̃ lives over. This is
then equivalent to the condition guaranteeing that the image lies in the component of StorKp,C indexed
by Z = (Z,Φ), where Z is not the trivial cusp label, and thus lies in the boundary ∂StorKp,C . The
claim follows.

It remains to see the analogous claim for the minimal compactification. This follows easily using
Theorem 3.2 and the fact that the proper surjective map Igb,torC → Igb,∗C sends ∂Igb,torC to ∂Igb,∗C by
construction. □

We have the following Corollary.

Corollary 3.6. For a geometric point x : Spa(C,C+)→ FℓbG,µ−1, we have an identification:

RΓc−∂(Ig
b,Fℓ) ≃ RπHT!(Fℓ)x.

Proof. We have an identification π−1HT(x) ≃ Ig
b,∗
C \ ∂Ig

b,∗
C by the previous Corollary, so, by proper

base-change, we are tasked with computing the compactly supported cohomology of this space. We
note, by Theorem 3.3, the adic spaces Igb,∗C are affinoid perfectoid. It follows that the canonical
compactification Ig

b,∗
C ≃ (π∗HT)

−1(x) is also affinoid perfectoid, by [Sch18, Proposition 18.7 (iv)]. In
particular, it is quasi-compact and partially proper, so in particular proper. It therefore follows by
excision1 that we have a distinguished triangle

(3) RΓc(π
−1
HT(x),Fℓ)→ RΓ(Ig

b,∗
C ,Fℓ)→ RΓ(∂Ig

b,∗
C ,Fℓ)

+1−−→ .

Applying Theorem 3.2 again, we know that k : Igb,∗ ↪→ Ig
b,∗
C is a qcqs open immersion of perfectoid

spaces inducing an isomorphism on rank 1 points, and it follows that the same is true for the
induced map on the Zariski closed subspaces ∂k : ∂Igb,∗ ↪→ ∂Ig

b,∗
C . Therefore, we can apply [CS17,

Lemma 4.4.2], this tells us that the natural maps

Fℓ → k∗(Fℓ)

Fℓ → ∂k∗(Fℓ)

are isomorphisms, giving identifications RΓ(Ig
b,∗
C ,Fℓ) ≃ RΓ(Igb,∗C ,Fℓ) and RΓ(∂Ig

b,∗
C ,Fℓ) ≃

RΓ(∂Igb,∗C ,Fℓ). Now, by [CS17, Lemma 4.4.3], we have further identifications of RΓ(∂Igb,∗C ,Fℓ)

1One easily checks that the excision sequence is exact on points, and this is sufficient by [Sch18, Proposition 14.3].
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and RΓ(Igb,∗C ,Fℓ) with the cohomology of the perfect schemes ∂Igb,∗ and Igb,∗, respectively. Substi-
tuting this into the triangle (3), we get a distinguished triangle

RΓc(π
−1
HT(x),Fℓ)→ RΓ(Igb,∗,Fℓ)→ RΓ(∂Igb,∗,Fℓ)

+1−−→ .

By applying quasi-compact base-change [Sch18, Proposition 17.6] and then using that the inclusion
∂Igb,∗C ⊂ Igb,∗C is induced from taking the rigid generic fiber over C of Witt vectors applied to ∂Igb,∗ ⊂
Igb,∗, we identify the last map with the natural restriction map on the cohomology. However, this
identifies the first term with precisely the partially compactly supported cohomology, as desired. □

We will combine this with the following proposition, which already hints at our expectation that
RπHT!(Fℓ) is connective in some suitable perverse t-structure.

Proposition 3.7. If db := ⟨2ρG, νb⟩ = dim(Igb,∗) = dim(Igb) then the cohomology of the complex

RΓc−∂(Ig
b,Fℓ) ≃ RπHT!(Fℓ)x

is concentrated in degrees ≤ db.

Proof. We saw in Theorem 3.3 that Igb,∗ is an affine scheme. So we would like to apply Artin
vanishing; however, Igb,∗ is also a perfect scheme so in particular not of finite type. To remedy this,
consider the pro-étale cover

Igb → CperfXb
,

with Galois group Aut(X)(Fp) over the perfection of the central leaf attached to Xb. This is obtained
as the perfection of the limit of the finite étale covers

Igbm → CXb
,

described in 2.2.3, as shown in [CS17, Proposition 4.3.8]. These spaces are of finite type over Fp.
We now define Igb,∗m to be the normalization of C∗X in Igbm of the finite étale cover Igbm → CXb

. By
[San23, Theorem 3.33], C∗X is affine; therefore, it follows that Igb,∗m is a normal and affine scheme
which will be of finite type, since Igbm is. It follows, by definition of Igb,∗, that it is the perfection of
limm≥1 Ig

b,∗
m . Therefore, since passing to perfections doesn’t change the étale cohomology, we can

conclude by combining Artin vanishing with an application of [Sta23, Tag 09QY] to the system of
sheaves gb,m!(Fℓ), where gb,m : Igbm → Igb,∗m is the natural open inclusion at finite level. □

Now we would like to link this analysis with the semi-perversity of certain sheaves on BunG. We
consider the Hodge-Tate period morphism

πHT : [SKp/G(Qp)]→ [FℓG,µ−1/G(Qp)]

quotiented out by G(Qp). We let h→ : [FℓG,µ−1/G(Qp)] → [Spd(C)/G(Qp)] ≃ Bun1G be the
structure map quotiented out by G(Qp). Note this is a proper map, since FℓG,µ−1 is proper over
Spd(C).

Then we have an identification

(4) RΓc(SKp,C ,Fl) ≃ h→∗ RπHT!(Fℓ)
of G(Qp)-representations, and this computes the compactly supported torsion cohomology of the
Shimura variety.

Similarly, we have a map
h← : [FℓG,µ−1/G(Qp)]→ BunG

remembering the isomorphism class of the bundle E1 in the moduli interpretation of FℓG,µ−1 as a dia-
mond. This defines a cohomologically smooth map by [FS21, Theorem IV.1.19], and the image iden-
tifies with the open subset B(G,µ) ⊂ B(G) under the identification |BunG| ≃ B(G) of topological
spaces, where |BunG| denotes the underlying topological space of BunG and B(G) has the topology
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given by its natural partial ordering [Vie21]. For each b, we have a locally closed Harder-Narasimhan
stratum jb : Bun

b
G ↪→ BunG, and we can define the locally closed subset [FℓbG,µ−1/G(Qp)], by pulling

back this HN-strata along h←. This defines a locally closed stratification of [FℓG,µ−1/G(Qp)]. Let
ib : [FℓbG,µ−1/G(Qp)] ↪→ [FℓG,µ−1/G(Qp)] denote the associated locally closed immersion. We write

πbHT : [SbKp,C/G(Qp)] → [FℓbG,µ−1/G(Qp)] (resp. πb,∗HT : [Sb,∗Kp,C
/G(Qp)] → [FℓbG,µ−1/G(Qp)]) for the

pullbacks of πHT (resp. π∗HT) along ib. On the good reduction locus, we also have an additional
stratification coming from pulling back the Newton stratification on the special fiber along the spe-
cialization map. There is a rather subtle point that this does not agree with the pullback of the
locally closed strata FℓbG,µ−1 (namely, the closure relationships are opposite with respect to the

partial ordering on B(G)). We write Sb,◦,rdKp,C for these Newton strata coming from the special fiber.
There exists a natural map

Sb,◦,rdKp,C ×FℓG,µ−1 FℓbG,µ−1 ↪→ Sb,◦Kp,C

which is a qcqs open immersion containing all rank 1 points ([CS17, Page 68] [Kos21, Page 8]). We
write πb,◦HT : [(Sb,◦,rdKp,C ×FℓG,µ−1 FℓbG,µ−1)/G(Qp)]→ [FℓbG,µ−1/G(Qp)] for the Hodge-Tate period map

on this locus, and similarly we write πb,◦HT : [Sb,◦Kp,C/G(Qp)]→ [FℓbG,µ−1/G(Qp)] for the induced map
on the canonical compactification, where we note that this agrees with the canonical compactification
of [(Sb,◦,rdKp,C ×FℓG,µ−1 FℓbG,µ−1)/G(Qp)] by the previous remark on rank 1 points and the fact that
FℓbG,µ−1 is partially proper2.

Define the group diamond Jb := Aut(Eb), as in [FS21, Proposition III.5.1]. We have an isomor-
phism jb : Bun

b
G ≃ [Spd(C)/Jb] ↪→ BunG with the locally closed HN-strata in BunG defined by b.

There is a Jb-torsor over the adic Newton strata FℓbG,µ−1 given by rigidifying the bundle E to be
isomorphic to Eb. This gives a map

h←b : [FℓbG,µ−1/G(Qp)]→ [Spd(C)/Jb] ≃ BunbG,C

such that h← ◦ ib = jb ◦ h←b .
The perfectoid Igusa variety IgbC comes equipped with an action of Jb. Namely, using [CS17,

Proposition 4.2.11], we get an action on the trivialization of Xb, as in the moduli description in
equation (2). This action extends to the formal model, giving rise to the action of Jb the generic
fiber. This allows us to form the map of v-stacks:

πbIg : [Ig
b
C/Jb]→ [Spd(C)/Jb].

We would like to say πbIg pulls back to the map πbHT. However, as seen in Corollary 3.6, we need to
account for the additional points in the fiber of the Hodge-Tate period morphism that are not seen
by the perfectoid Igusa varieties IgbC . To capture this, we need to show that πbIg also extends to the
partial minimal compactification. We have the following.

Proposition 3.8. [Zha23, Corollary 9.43] Assuming 1.10, the action of Jb on the perfectoid Igusa
variety IgbC extends uniquely to an action on Igb,∗C . In particular, by functorality of the formation
of the canonical compactification ([Sch18, Proposition 18.6]), we have a map

πb,∗Ig : [Ig
b,∗
C /Jb]→ [Spd(C)/Jb]

extending πbIg. This action preserves the boundary ∂Igb,∗, so, in particular, we also get a map

πb,∂Ig : [(Ig
b,∗
C \ ∂Ig

b,∗
C )/Jb]→ [Spd(C)/Jb]

by restriction.
2The partial properness of these strata follows directly from the moduli interpretation, since the category of vector

bundles on the Fargues-Fontaine curve is insensitive to the ring of definition.
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Proof. We consider the open immersion

gb : Ig
b → Igb,∗

of perfect schemes, which we claim induces an isomorphism on global sections. To show this, we
write gb as the perfection of the limit of the corresponding maps at finite level

gb,m : Igbm ↪→ Igb,∗m ,

as explained in the proof of Proposition 3.7. Under Assumption 1.10, we can apply the algebraic
form of Hartogs’ principle (See for example [Sch15, Proposition III.2.9]) to the open inclusion gb,m
to conclude an isomorphism of global sections via restriction. This gives the corresponding claim
for the map gb of perfect schemes. In particular, we have an isomorphism

(5) O(Igb) ≃ O(Igb,∗)

on global sections. Taking generic fibers of the corresponding integral models, we claim that we
obtain an isomorphism

(6) O(IgbC) ≃ O(Ig
b,∗
C ),

of global sections. We need to be a bit careful here with analytic sheafification. In particular, for
an index set I, we let {Ui}i∈I be an affine covering of Igb, and compute global sections via the Čech
complex

(7) 0→ O(Igb)→
∏
i∈I
O(Ui)→

∏
i,j∈I
O(Ui ∩ Uj)→ · · · .

We let Ui be the formal schemes obtained by taking Witt vectors of this affine covering, with adic
generic fibers Ui,C over C. These form an affinoid perfectoid covering of the adic space IgbC , and,
by the acyclicity of affinoid perfectoids [Sch14, Theorem 1.8 (iv)], we have that

(8) 0→ O(IgbC)→
∏
i∈I
O(Ui,C)→

∏
i,j∈I
O(Ui,C ∩ Uj,C)→ · · · .

It follows that the Čech complex (8) is obtained from Čech complex (7) by taking Witt vectors fol-
lowed by taking the completed tensor product with C. Using this, we deduce that the identification
(6) follows from the identification (5), as desired.

Now Jb acts on the LHS of (6), as discussed above. Using that Igb,∗ is affinoid, this will give
the desired action on Igb,∗, and one can see that it preserves the boundary by using the moduli
interpretation of the toroidal compactifications, and the description of the Jb(Qp) action on cusp
labels, as discussed in §2.2.2. □

Lastly, we will consider the map πbIg : [Ig
b
C/Jb]→ [∗/Jb], given by taking the canonical compact-

ification of πbIg, where we note, by [CS17, Proposition 4.2.22], the v-stack [Spd(C)/Jb] is partially
proper over Spd(C). We now have the following Proposition.

Proposition 3.9. The maps constructed above fit into the following Cartesian squares3

(9)

[
(Sb,◦,rdKp,C ×FℓG,µ−1 FℓbG,µ−1)/G(Qp)

] [
FℓbG,µ−1/G(Qp)

]
[
IgbC/Jb

]
[Spd(C)/Jb]

πb,◦
HT

h̃←b h←b
πb
Ig

3We emphasize that these are really diagrams of v-stacks and that all fiber products are formed in this category.
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and

(10)

[
Sb,◦Kp,C/G(Qp)

] [
FℓbG,µ−1/G(Qp)

]
[
Ig

b
C/Jb

]
[Spd(C)/Jb] .

πb,◦
HT

h̃←b h←b

πb
Ig

Proof. Consider the moduli space of local shtukas Sht(G, b, µ)∞,C , as defined in [SW20, §23]. This
represents the functor sending S ∈ PerfC to the set of all pairs (S#, α) where S# is the untilt of S
coming from the map S → Spd(C), and α is a modification from Eb 99K E0 with meromorphy along
S# and bounded by µ. We have a local Hodge-Tate period morphism

Sht(G, b, µ)∞,C → FℓbG,µ−1 ,

which fits into the following Cartesian diagram coming from the definition of Sht(G, b, µ)∞,C .

(11)

Sht(G, b, µ)∞,C Spd(C)

FℓbG,µ−1 [Spd(C)/Jb]

Let Sht(G, b, µ)∞,C ×Jb IgbC denote the quotient of Sht(G, b, µ)∞,C ×C IgbC by {(jx, j−1y) : j ∈
Jb, x ∈ Sht(G, b, µ)∞,C , y ∈ IgbC}. To see that the diagram (9) above is Cartesian, observe that (11)
implies we have an isomorphism

FℓbG,µ−1 ×[Spd(C)/Jb] [Ig
b
C/Jb] ≃ Sht(G, b, µ)∞,C ×Jb IgbC .

Moreover, we see, by [CS17, Corollary 4.3.19, Lemma 4.3.20], that we have an isomorphism

(12) Sht(G, b, µ)∞,C ×C IgbC ≃ S
b,◦,rd
Kp ×FℓG,µ−1 Sht(G, b, µ)∞,C ,

and again applying (11) implies that Sb,◦,rdKp ×FℓG,µ−1 FℓbG,µ−1 is isomorphic to the quotient of

Sb,◦,rdKp ×FℓG,µ−1 Sht(G, b, µ)∞,C by the action of Jb (here Jb acts via the action on the second
factor). Thus, we have an isomorphism:

Sht(G, b, µ)∞,C ×Jb IgbC ≃ S
b,◦,rd
Kp ×FℓG,µ−1 FℓbG,µ−1 .

This gives us the Cartesian diagram (10). Now, the natural map,

Sb,◦,rdKp,C ×FℓG,µ−1 FℓbG,µ−1 ↪→ Sb,◦Kp,C

is a qcqs open immersion, which is an isomorphism on rank 1 points. In turn, it induces an
isomorphism of canonical compactifications over the partially proper strata FℓbG,µ−1 . Therefore, by
passing to canonical compactifications over FℓbG,µ−1 , we deduce that diagram (10) is also Cartesian.

□

We now invoke a result of Zhang [Zha23].
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Theorem 3.10. [Zha23, Theorem 1.3] Assuming 1.10, for all b ∈ B(G,µ) the Cartesian diagram
(10) extends to a Cartesian diagram

(13)

[
Sb,∗Kp,C/G(Qp)

] [
FℓbG,µ−1/G(Qp)

]
[
Ig

b,∗
C /Jb

]
[Spd(C)/Jb]

πb,∗
HT

∗h̃←b h←b

πb,∗
Ig

of v-stacks.

Remark 3.11. In fact Zhang shows a much stronger claim, that there exists a series of larger Cartesian
diagrams living over BunG.C such that the diagrams (10) and (13), are the base-change along the
inclusions jb : BunbG,C ↪→ BunG,C of HN-strata for b ∈ B(G,µ) varying.

Remark 3.12. The rough idea behind proving this is to apply a relative Spa construction in the
category of diamonds to the horizontal maps of the diagram (13) by invoking Hartogs’ principle, as
in Proposition 3.8.

We now state the key Corollary that we will need.

Corollary 3.13. Assuming 1.10, for all b ∈ B(G,µ) we have a Cartesian diagram

(14)

[
SbKp,C/G(Qp)

]
FℓbG,µ−1

[
(Ig

b,∗
C \ ∂Ig

b,∗
C )/Jb

]
[Spd(C)/Jb] .

πb
HT

∂ h̃←b h←b

πb,∂
Ig

Proof. This follows from the Cartesian diagram (13) and Corollary 3.5. □

By the Cartesian diagram (14), if we look at the sheaf

i∗bRπHT!(Fℓ)

we can see that this is canonically identified with

h←∗b Rπb,∂Ig!(Fℓ)

via proper base change. Moreover, we can identify Rπb,∂Ig!(Fℓ) simply with the complex Vb :=

RΓc−∂(Ig
b,Fℓ) of Jb(Qp)-modules under the identification D(BunbG,Fℓ) ≃ D(Jb(Qp),Fℓ), as in Corol-

lary 3.6. We can further refine this using the following lemma.

Lemma 3.14. We have isomorphisms

ib!h
←∗
b (Vb) ≃ h←∗jb!(Vb)

and
ib∗h

←∗
b (Vb) ≃ h←∗jb∗(Vb)

of sheaves on FℓG,µ−1.

Proof. The first isomorphism follows from proper base-change. For the second isomorphism, we
note that

h← : [FℓG,µ−1/G(Qp)]→ BunG

is cohomologically smooth separated and representable in locally spatial diamonds; therefore, the
result follows by smooth base-change [Sch18, Proposition 23.16 (2)]. □
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Remark 3.15. In particular, the graded pieces of the filtration

RΓ([FℓG,µ−1/G(Qp)], ib!i
∗
b(RπHT!(Fℓ)))

on the cohomology of the Shimura variety are identified with h→∗ h
←∗jb!(Vb) ∈ D(G(Qp),Fℓ), and

similarly for RΓ([FℓG,µ−1/G(Qp)], ib∗i
∗
b(RπHT!(Fℓ))) and h→∗ h←∗jb∗(Vb).

All in all, we get the following.

Proposition 3.16. Assuming 1.10, we have a filtration on RΓc(S(G, X)Kp,C ,Fℓ) by complexes
of smooth representations of G(Qp), with graded pieces isomorphic to h→∗ h

←∗jb!(Vb), where Vb ≃
RΓc−∂(Ig

b,Fℓ).

The functor h→∗ h←∗(−) appearing on the graded pieces is manifestly related to the action on
D(BunG,Fℓ) by Hecke operators. In particular, for each geometric dominant cocharacter µ ∈
X∗(TQp

)+, we have a correspondence

HckG,≤µ

BunG BunG × Spd(C)
h←µ

h→µ

where HckG,≤µ is the stack parametrizing modifications E1 → E2 of a pair of G-bundles with
meromorphy bounded by µ over the fixed untilt defined by C. We define the Hecke operator [FS21,
Section IX.2]

Tµ : D(BunG,Fℓ)→ D(BunG,Fℓ)BWEµ

A 7→ h→µ∗(h
←∗
µ (A)⊗L Sµ)

where Eµ is the reflex field of µ and Sµ is a sheaf on HckG,≤µ attached to the highest weight tilting
module Tµ by geometric Satake4. Here Eµ denotes the reflex field of µ.

If we now let µ be the minuscule cocharacter appearing above then the Bialynicki-Birula map
gives an isomorphism of diamonds between the open locus of HckG,≤µ where E1 is isomorphic to the
trivial bundle and [FℓG,µ−1/G(Qp)], which identifies h→µ (resp. h←µ )) with h→ (resp. h←). Moreover,
this is a cohomologically smooth space of dimension d := ⟨2ρG, µ⟩, and we have an isomorphism
Sµ ≃ Fℓ[d](d2)

5. It follows, by proper base-change, that we have an isomorphism

h→∗ h
←∗jb!(Vb) ≃ j∗1Tµ(jb!(Vb))[−d](−

d

2
)

of G(Qp) ×WEp-modules, where 1 ∈ B(G) is the trivial element. The WEp-equivariance follows
since the above Cartesian diagrams all descend to Ĕp and are also compatible with the Frobenius
descent datum on Sht(G, b, µ)∞,C → Spd(Ĕp) (This is true for (9) by the results of [CS17] and all
the other diagrams are constructed from this one). This gives us Theorem 1.12.

Corollary 3.17. Assuming 1.10, the complex RΓc(S(G, X)Kp,C ,Fℓ) has a G(Qp) × WEp-
equivariant filtration with graded pieces given by j∗1Tµ(jb!(Vb))[−d](−d

2) for varying b ∈ B(G,µ),
where Vb ≃ RΓc−∂(Igb,Fℓ).

Moreover, we obtain that each graded piece is isomorphic to

(RΓc(G, b, µ)⊗L
H(Jb)

Vb)[2db]

4We note that, using [FS21, Proposition VII.5.2], we can replace the natural push-forward in the category of solid
sheaves with the * push-forward in the usual category of étale Fℓ-sheaves when defining the Hecke operator.

5This is true for the highest weight module Vµ and this agrees with the highest weight tilting module Tµ, since µ
is minuscule.
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as G(Qp)×WEp-modules. Here

RΓc(G, b, µ) := colimKp→{1}RΓc(Sht(G, b, µ)∞,C/Kp,Fℓ(db))

is a complex of G(Qp)×Jb(Qp)×WEp-modules, where Sht(G, b, µ)∞,C is as defined above, and Fℓ(db)
is the sheaf with trivial Weil group action and Jb(Qp)-action given as in [Kos21, Lemma 7.4].

Proof. It remains to explain the description of j∗1Tµ(jb!(Vb))[−d](−d
2). By applying the second part

of [Ham22, Proposition 11.12] and noting that Sµ ≃ Fℓ[d](d2) since µ is minuscule (where we recall
that, since µ is minuscule, the representation Tµ agrees with the usual highest weight representation),
we obtain that the graded pieces are isomorphic to

colimKp→{1}(RΓc(Sht(G, b, µ)∞,C/Kp,Fℓ)⊗L
H(Jb)

Vb ⊗ κ−1)[2db]

as desired, where κ is the character of Jb(Qp) defined by the action of Jb(Qp) on the compactly
supported cohomology of the ℓ-adically contractible group diamond J >0

b , where Jb ≃ J >0
b ⋉Jb(Qp)

is the semi-direct product structure given by allowing Aut(Eb) to act on its canonical reduction.
However, by combining this with [Kos21, Lemma 7.6] and its proof, we can rewrite this as

(colimKp→{1}RΓc(Sht(G, b, µ)∞,C/Kp,Fℓ(db))⊗L
H(Jb)

Vb)[2db],

as desired. □

4. The Local Results

4.1. The Spectral Action. Let G/Qp be a quasi-split connected reductive group with a choice of
Borel B and maximal torus T as before. We will work with D(BunG,Fℓ), the derived category of
étale Fℓ-sheaves on the moduli stack of G-bundles. Our goal in this section will be to describe a
localization D(BunG,Fℓ)ϕm ⊂ D(BunG,Fℓ) for m ⊂ HKhs

p
a generic maximal ideal with associated

semi-simple L-parameter ϕm in the case that G is unramified. We will do this in slightly more
generality using the spectral action [FS21, Section X.2]. We assume that ℓ is very good as in [FS21,
Page 33], and consider the moduli stack XĜ/ SpecFℓ of Fℓ-valued Langlands parameters, as defined
in [Dat+20; Zhu20]. We let Perf(XĜ) denote the derived category of perfect complexes on this

stack, and we write Perf(XĜ)
BW I

Qp for the derived category of objects with a continuous W I
Qp

action
for a finite index set I, and D(BunG,Fℓ)ω for the triangulated sub-category of compact objects in
D(BunG,Fℓ). By [FS21, Corollary X.I.3], there exists a Fℓ-linear action

Perf(XĜ)→ End(D(BunG,Fℓ)ω)
C 7→ {A 7→ C ⋆ A}

which, extending by colimits, gives

Ind(Perf(XĜ))→ End(D(BunG,Fℓ))
We recall the following basic properties of this action.

(1) For V = ⊠i∈IVi ∈ RepFℓ
(LGI), there is an attached vector bundle CV ∈ Perf(XĜ)

BW I
Qp

whose evaluation at a Fℓ-point of XĜ corresponding to a (not necessarily semi-simple) L-
parameter ϕ̃ : WQp → LG(Fℓ) is the vector space V with W I

Qp
-action given by ⊠i∈IrVi ◦ ϕ̃.

The endomorphism

CV ⋆ (−) : D(BunG,Fℓ)→ D(BunG,Fℓ)
BW I

Qp

is the Hecke operator TV attached to V .
(2) The action is monoidal in the sense that, given C1, C2 ∈ Perf(XĜ), we have a natural

equivalence of endofunctors

(C1 ⊗L C2) ⋆ (−) ≃ C1 ⋆ (C2 ⋆ (−)).
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If ϕ : WQp → LG(Fℓ) is a semi-simple L-parameter then this defines a closed Fℓ-point x in the
moduli stack of Langlands parameters, which maps to a closed point in the coarse moduli space.
We let mϕ ⊂ OXĜ

(XĜ) denote the corresponding maximal ideal. We recall that, for all f ∈ OXĜ
(XĜ)

and A ∈ D(BunG,Fℓ), one obtains an endomorphism

A ≃ OXĜ
⋆ A→ OXĜ

⋆ A ≃ A
induced by multiplication by f . Under the description of OXĜ

(XĜ) in terms of the excursion algebra,
this encodes the action of the excursion algebra on D(BunG,Fℓ) [Zou22, Theorem 5.2.1]. More pre-
cisely, we recall that, since ℓ is very good [FS21, Page 33], to any Schur-irreducible A ∈ D(BunG,Fℓ)
we can, by [FS21, Proposition I.9.3], attach a conjugacy class of semi-simple L-parameters

ϕFSA :WQp → LG(Fℓ)
called the Fargues-Scholze parameter of A. By [FS21, Theorem VIII.3.6], we have an identification
between the ring of global functions OXĜ

(XĜ) and excursion operators. Since A is Schur irreducible
the endomorphisms corresponding to f ∈ OXĜ

(XĜ) determine a non-zero scalar in Fℓ which will be
determined by the excursion datum evaluated at the Fargues-Scholze parameter ϕFSA .

With this in hand, we can make our key definition.

Definition 4.1. We define ιϕ : D(BunG,Fℓ)ϕ ↪→ D(BunG,Fℓ) to be the full-subcategory of objects
A for which the endomorphisms A→ A induced by f ∈ OXĜ

\mϕ are isomorphisms.

It is easy to check that the subcategory D(BunG,Fℓ)ϕ ⊂ D(BunG,Fℓ) is preserved under colimits
and limits, and therefore, by the ∞-categorical adjoint functor theorem [Lur09, Corollary 5.5.2.9],
there exists a left adjoint to the inclusion ιϕ denoted by Lϕ. We define (−)ϕ := ιϕLϕ(−). This, by
the fully faithfulness of ιϕ, will define an idempotent functor (See Appendix A for details).

We now have the following key lemma.

Lemma 4.2. The following is true.
(1) Any Schur irreducible object A ∈ D(BunG,Fℓ)ϕ has Fargues-Scholze parameter equal to ϕ as

conjugacy classes of parameters.
(2) Given V ∈ RepFℓ

(LGI), the Hecke operator TV : D(BunG,Fℓ) → D(BunG,Fℓ)
BW I

Qp takes

the subcategory D(BunG,Fℓ)ϕ to D(BunG,Fℓ)
BW I

Qp

ϕ , and there is a natural isomorphism
TV ((−)ϕ) ≃ (TV (−))ϕ.

(3) Given A ∈ D(G(Qp),Fℓ) ⊂ D(BunG,Fℓ), we have an isomorphism

RΓ(Khs
p , A)m ≃ RΓ(Khs

p , Aϕm),

where the LHS is the usual localization under the smooth Hecke algebra.
(4) If A ∈ Dlis(BunG,Fℓ) is ULA then one has a direct sum decomposition

A ≃
⊕
ϕ

Aϕ

ranging over all semi-simple L-parameters.

Proof. Claims (2) and (4) follow from Proposition A.2 and Proposition A.5, respectively, where for
claim (2) we use the relationship between Hecke operators and the spectral action described above.

For (1), this follows since the action of OXĜ
(XĜ) on A will factor through the maximal ideal mA

defined by the semi-simple L-parameter ϕFSA attached to A by the above discussion, and therefore
A ∈ D(BunG,Fℓ)ϕ forces an equality of maximal ideals: mA = mϕ.

For (3), we use the arguments in Koshikawa [Kos21, Page 6]. Consider the map

OXĜ
(XĜ)→ EndG(Qp)(cInd

G(Qp)

Khs
p

(Fℓ)) ≃ Hop
Khs

p
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given by the spectral action, where cInd
G(Qp)

Khs
p

(Fℓ) is regarded as a right HKhs
p

-module. It is shown
that after through the usual action by the unramified Hecke algebra composed with the involution
KhK → Kh−1K gives rise to a map which is compatible with usual L-parameters for unramified
irreducible representations. In particular, the pullback of the maximal ideal m ⊂ HKhs

p
is given

by the maximal ideal mϕm ⊂ OXĜ
(XĜ). Now, by arguing as in Proposition A.3, we have an

identification:
RHom(cInd

G(Qp)

Khs
p

(Fℓ), Aϕm) ≃ RHom(cInd
G(Qp)

Khs
p

(Fℓ), A)mϕm
.

Using Frobenius reciprocity, this gives an identification:

RΓ(Khs
p , Aϕm) ≃ RΓ(Khs

p , A)mϕm
,

but the RHS identifies with RΓ(Khs
p , A)m, as explained above. □

We note that we get the following Corollary of this.

Corollary 4.3. Let A be a complex of smooth G(Qp)-representations which is admissible (i.e AK
is a perfect complex for all compact open K ⊂ G(Qp)). We then have a decomposition

A ≃
⊕
ϕ

Aϕ

running over semisimple L-parameters, where any irreducible constituent π of Aϕ has Fargues-
Scholze parameter equal to ϕFSπ , as conjugacy classes of parameters.

Proof. This follows by applying to Lemma 4.2 (1) and (4) to the full subcategory D(G(Qp),Fℓ) ⊂
D(BunG,Fℓ) □

Now our goal is to describe the subcategory D(BunG,Fℓ)ϕ more explicitly, using the results of
[Ham22] in the case that ϕ is induced from a generic toral parameter ϕT . To do this, we will need
to have some information about the Fargues-Scholze local Langlands correspondence. First, let us
introduce some notation.

We let B(G)un := Im(B(T )→ B(G)). We recall that these are precisely the elements b ∈ B(G)
such that the σ-centralizer Jb is quasi-split ([Ham22, Lemma 2.12]). In particular, the fixed choice
of Borel B ⊂ G transfers to a Borel subgroup Bb for all b ∈ B(G)un, and Jb ≃ Mb under the
inner twisting, where Mb ⊂ G is the Levi subgroup of G determined by the centralizer of the slope
homomorphism of b in G. We let δPb

denote the modulus character of the standard parabolic Pb
of G with Levi factor Mb transferred to Jb under the inner twisting. We set Wb := WG/WMb

to
be the quotient of the relative Weyl group of G by the relative Weyl group of Mb. We identify Wb

with a choice of representatives in w ∈ WG of minimal length. We set ρb,w := iJbBb
(χw) ⊗ δ−1/2Pb

to
be the normalized parabolic induction of χw, where χ is the character of T (Qp) attached to a toral
parameter ϕT under local class field theory and δPb

is the modulus character of Mb ≃ Jb.
We will need to assume the following properties of the Fargues-Scholze local Langlands corre-

spondence, as in [Ham22, Assumption 7.5].

Assumption 4.4. For a connected reductive group H/Qp, we have
• the set Π(H) of smooth irreducible Qℓ-representations of H(Qp),
• the set Φ(H) of conjugacy classes of continuous maps

WDQp → LH(Qℓ)

where Qℓ has the discrete topology, SL(2,Qℓ) acts via an algebraic representation, and the
map respects the action of WQp on LH(Qℓ), the L-group of H,
• the set Φss(H) of continuous semi-simple homomorphisms

WQp → LH(Qℓ),



TORSION VANISHING FOR SOME SHIMURA VARIETIES 29

• and the semi-simplification map (−)ss : Φ(H)→ Φss(H) defined by precomposition with

WQp →WQp × SL(2,Qℓ)

g 7→ (g,

(
|g|1/2 0

0 |g|−1/2

)
).

Then, we assume, for all b ∈ B(G), that there exists a map

LLCb : Π(Jb)→ Φ(Jb)

ρ 7→ ϕρ

satisfying the following properties:
(1) The diagram

Π(Jb) Φ(Jb)

Φss(Jb)

LLCb

LLCFS
b

(−)ss

commutes, where LLCFS
b is the Fargues-Scholze local Langlands correspondence for Jb.

(2) Consider ϕρ as an element of Φ(G) given by composing with the twisted embedding LJb(Qℓ) ≃
LMb(Qℓ) → LG(Qℓ) (as defined in [FS21, Section IX.7.1]). Then ϕρ factors through the
natural embedding LT → LG if and only if b ∈ B(G)un.

(3) If ρ is a representation such that WQp × SL(2,Qℓ) → LJb(Qℓ) → LG(Qℓ) factors through
LT , where the last map is the twisted embedding then, by (2), the element b is unramified,
and we require that ρ is isomorphic to an irreducible constituent of ρb,w for w ∈ Wb and χ
the character attached to the induced toral parameter ϕT .

The importance of this assumption is that it allows us to deduce the following Proposition.

Proposition 4.5. Assuming 4.4, we have that the following is true for a parameter ϕ induced from
a generic parameter ϕT . Given any Schur-irreducible object A ∈ D(BunbG,Fℓ)ϕ ⊂ D(BunbG,Fℓ) ≃
D(Jb(Qp),Fℓ) then A is non-zero if and only if b ∈ B(G)un, and in this case it must be an irreducible
sub-quotient of ρb,w, for some w ∈Wb.

Proof. This follows from combining the proof of [Ham22, Corollary 7.7] with Lemma 4.2 (1). □

Since we want some flexibility in the groups for which we have the above results, we discuss how
Assumption 4.4 behaves under central isogenies.

4.1.1. Assumption 4.4 under Central Isogenies. We consider an injective map ψ : G′ ↪→ G of
connected reductive groups which induces an isomorphism of adjoint and derived groups, and the
induced map ψBun : B(G′) → B(G) on the associated Kottwitz sets. We now have the following
lemma.

Lemma 4.6. If ψ : G′ → G is an injective map which induces an isomorphism on adjoint and
derived groups then it follows that ψBun : B(G′)→ B(G) induces an injection Jb′ → Jb which is an
isomorphism of the derived group and adjoint groups for all b = ψBun(b

′) and b′ ∈ B(G′).

Proof. Since ψ is an inclusion it easily follows that it induces an inclusion Jb′ → Jb of σ-centralizers.
To see that it induces an isomorphism on derived/adjoint groups, recall that Jb is an inner form of a
Levi subgroupMb of G given by the centralizer of the slope homomorphism of b. The preimage ofMb

under ϕ defines a Levi subgroup Mb′ of G which will be the centralizer of the slope homomorphism
of b′, since ϕ induces an isomorphism on adjoint groups. Moreover, the inner twisting from Jb to Mb

and Jb′ to Mb′ are compatible with the inclusion in the sense that the inclusion Jb′ → Jb is given by
applying the inner twist of Mb to the inclusion Mb′ → Mb. Since the formation of derived/adjoint



30 LINUS HAMANN AND SI YING LEE, WITH AN APPENDIX BY DAVID HANSEN

groups respects inner twists, this reduces us to showing that the map Mb′ →Mb on Levi subgroups
induces an isomorphism on the derived/adjoint groups, and this is clear. □

We now consider a map LLCBunG :
⊔
b∈B(G)Π(Jb) → Φ(G) determined by components LLCb :

Π(Jb)→ Φ(Jb) and satisfying Assumption 4.4. We now wish to define LLCBunG′ :
⊔
b′∈B(G′)Π(Jb)→

Φ(G′) in terms of LLCBunG , and show that it also satisfies Assumption 4.4. To do this, we note that,
for varying b′ ∈ B(G′), we define LLCb′ : Π(Jb′)→ Φ(Jb′) to be the correspondence that makes the
following diagram

Π(Jb) Φ(Jb)

Π(Jb′) Φ(Jb′)

LLCb

LLCb′

commute, where b := ψBun(b
′). Here the right vertical arrow is given by composing a parameter

ϕ : WDQp → LJb(Qℓ) with the induced map LJb → LJb′ on the dual groups, and the left vertical
arrow is not a map at all, it is a correspondence defined by the subset of Π(Jb)×Π(Jb′) consisting
of pairs (πb, πb′) such that πb′ is a constituent of the restriction of πb to Jb′(Qp). We will now
show that this gives rise to a well-defined map under our assumptions on ψ. Given a representation
πb′ ∈ Π(Jb′), it follows by [GK82, Lemma 2.3] and the previous Lemma that we can find a lift
πb ∈ Π(Jb) such that πb′ is an irreducible constituent of πb|Jb′ (Qp). It also follows from [GK82,
Lemma 2.1] and [Tad92, Proposition 2.4, Corollary 2.5] that the set Ππb(Jb′) of representations of
Jb′ occurring in the restriction of πb is finite. Now, using the previous Lemma, we have the following.

Lemma 4.7. [GK82, Lemma 2.4] For the map Jb′ → Jb of σ-centralizers induced by a map ψ as
above, and π1b , π

2
b ∈ Π(Jb) the following are equivalent.

(1) There exists a character χ ∈ (Jb(Qp)/Jb′(Qp))
∨ such that π1b ≃ π2b ⊗ χ, where (−)∨ denotes

the Pontryagin dual.
(2) Ππ1

b
(Jb′) ∩Ππ2

b
(Jb′) ̸= ∅

(3) Ππ1
b
(Jb′) = Ππ2

b
(Jb′).

Now we can use this to define LLCb′ : Π(Jb′) → Φ(Jb′) in terms of LLCb : Π(Jb) → Φ(Jb) for
LLCBunG satisfying Assumption 4.4. Namely, for πb′ ∈ Π(Jb′), we let πb ∈ Π(Jb) be a representation
such that πb′ occurs as an irreducible constituent of πb|Jb′ (Qp). We set ϕπb′ to be the parameter ϕπb
attached to πb under LLCb composed with the map LJb → LJb′ on dual groups induced by ψ.
By the previous Lemma, any two choices of lifts π1b and π2b of πb′ will differ by a character twist
of χ ∈ (Jb(Qp)/Jb′(Qp))

∨. We note that the Fargues-Scholze local Langlands correspondence is
compatible with character twists [FS21, Theorem I.9.6 (ii)]. Since LLCb is compatible with the
Fargues-Scholze local Langlands after semi-simplification by assumption, it follows that the same
is true for LLCb. Therefore, ϕπ1

b
and ϕπ2

b
differ by a character twist that becomes trivial after

composing with LJb → LJb′ , and so ϕπb does not depend on the choice of lift. We let LLCBunG′ :⊔
b′∈B(G′)Π(Jb′)→ Φ(G) be the local Langlands correspondence defined by the LLCb′ for b′ varying.

We now prove that our assumption is comaptible with central isogenies.

Proposition 4.8. Suppose we have an injective map ψ : G′ ↪→ G of quasi-split connected reductive
groups inducing an isomorphism on adjoint and derived groups. Assume we have a local Lang-
lands correspondence LLCBunG :

⊔
b∈B(G)Π(Jb) → Φ(G) such that Assumption 4.4 holds. If we let

LLCBunG′ :
⊔
b′∈B(G′)Π(Jb′) → Φ(G′) be the local Langlands correspondence induced by LLCBunG

and ψ as above then LLCBunG′ satisfies Assumption 4.4 as well.

Proof. We note, since the Fargues-Scholze local Langlands correspondence is compatible with maps
G′ → G that induce an isomorphism of adjoint groups [FS21, Theorem I.9.6 (v)], it follows by
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the above construction that if Assumption 4.4 (1) holds true for LLCBunG then it also holds true
for LLCBunG′ . Suppose we have b′ ∈ B(G′) mapping to b ∈ B(G)un. We let Bb ⊂ Jb be the
corresponding Borel then, since the map Jb′ → Jb induces an isomorphism on adjoint groups by
Lemma 4.6, it follows that B ∩ Jb′ =: Bb′ ⊂ Jb′ is a Borel of Jb′ . In particular, b′ must be an
unramified element of B(G′)un. Now, the map Jb′ → Jb induces an isomorphism

Jb′/B
′ ≃ Jb/B.

If we let T be the maximal split torus of Jb then the preimage T ′ under ϕ is a maximal torus of Jb′ ,
and the previous isomorphism of flag varieties implies that, given a character χ : T (Qp) → Q∗ℓ , we
have an isomorphism:

iJbBb
(χ)|Jb′ (Qp) ≃ i

Jb′
Bb′

(χ|T ′(Qp)).

Given πb′ and a lift πb to Jb then, by definition of ϕπb , we have that it is equal to

WDQp

ϕπb−−→ LJb(Qℓ)→ LJb′(Qℓ)

as a conjugacy class of parameters for Jb′ . Therefore, ϕπb′ factors through LT ′ if and only if ϕπb
factors through the preimage of LT ′ under the map LJb(Qℓ) → LJb′(Qℓ) of L-groups, but this is
precisely LT , and so Assumption 4.4 (2) holds for LLCBunG′ . Moreover, by Assumption 4.4 (3) for
LLCBunG , we have that, in the above situation, πb is an irreducible sub-quotient of iJbBb

(χw)⊗ δ−1/2Pb
,

but this implies that πb′ is an irreducible constituent of the restriction iJb′Bb′
(χw|T ′(Qp))⊗δ

−1/2
Pb′

. From
this, it follows that Assumption 4.4 (3) also holds for holds for LLCBunG′ . □

Now that we have shown this compatibility assumption is somewhat flexible, we can state the
groups we know to satisfy Assumption 4.4. This result is largely contained in [Ham21; FS21;
HKW22; BHN22], but we also want to consider an additional group GU2, where we have the
following construction of LLCBunGU2

. Recall that GU2/L can be written as

GU2 := (GL2 × ResL′/LGm)/Gm,

where Gm is embedded in H := GL2 × ResL′/L(Gm) via a 7→ (diag(a, a), a−1), and L′/L is an
unramified quadratic extension. Let ψ : B(H) → B(GU(2)) and let ψ̃ : B(H) → B(GL2) be the
map of Kottwitz sets. Given b ∈ B(H), let b′ = ψ(b), b̃ = ψ̃(b).

Lemma 4.9. There is a bijection between Π(Jb′) and the set of pairs (π̃, χ) such that π̃ ∈ Π(Jb̃)
and χ is a character of (L′)× such that χ|L× = ωπ̃|L×, where ωπ̃ is the central character of π̃.

Proof. We will show that we have an isomorphism

Jb′ ≃ (Jb̃ × ResL′/LGm)/Gm

of groups over L. In particular, we see that Jb = Jb̃ × ResL′/LGm, and the quotient map Jb → Jb′
induces an isomorphism on adjoint and derived subgroups of Jb′ . Moreover, by Hilbert’s Theorem
90, we have H1(L,Gm) = 0, and thus we also have a surjection on L-points, from which the lemma
follows. To see this isomorphism, recall that Jb (resp. Jb′ , Jb̃) is an inner form of Mb (resp. Mb′ ,Mb̃),
the Levi subgroup of H (resp. GU2,GL2) given by the centralizer of the slope homomorphism of b
(resp. b′, b̃). In particular, we see that we have an isomorphism

Mb′ ≃ (Mb̃ × ResL′/LGm)/Gm

and thus we have a surjective map Mb →Mb′ , since Mb =Mb̃×ResL′/LGm. Moreover, we see that
under these maps, we have isomorphisms Mad

b ≃Mad
b′ ≃Mad

b̃
, and the inner twist H1(L,Mad

b ) cor-
responding to Jb is, under this identification, the inner twist inducing Jb′ and Jb̃. The identification
of Jb′ then follows. □
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Moreover, we observe that we have an exact sequence of dual groups

1→ Ĵb′ → Ĵb → Gm → 1,

where the map p : Ĵb → Gm is defined as follows. We can write Ĵb = Ĵb̃ × G2
m, and we have maps

î1 : Ĵb̃ → Gm, î2 : ̂ResL′/LGm = G2
m → Gm induced from the inclusion maps i1 : Gm ↪→ Jb̃ and

i2 : Gm ↪→ ResL′/LGm, and p(g, h) = î1(g)̂i2(h)
−1.

Now, we want to define LLCBunGU2
in terms of LLCBunH . More precisely, for any b′ ∈ B(GU2) we

define LLCb′ : Π(Jb′)→ Φ(Jb′) in terms of LLCb : Π(Jb)→ Φ(Jb) for LLCBunH . For πb′ = (π̃, χ) ∈
Π(Jb′), we consider the image ϕ = LLCBunH ((π̃, χ)), and we want to show that ϕ : WDL → LJb(Qℓ)

factors through LJb′(Qℓ). To see this, from the exact sequence above, it suffices to show that
the composition of ϕ with the map LJb(Qℓ) → LGm(Qℓ) is trivial. However, we observe that the
condition that χ|L× = ωπ̃|L× exactly implies that this image is trivial, since the composition is the
L-parameter associated with the character ωπ̃χ−1|L× . Thus, we have an L-parameter ϕ′ : WDL →
LJb′(Qℓ). We thus define the map LLCb′ to take πb′ to ϕ′.

We now have the following theorem about the groups we know to satisfy Assumption 4.4.

Theorem 4.10. [Ham21; FS21; HKW22; BHN22] Assumption 4.4 is true and ℓ is very good in the
following cases.

(1) The group ResL/Qp
(GSp4) with p > 2 and [L : Qp] ≥ 2 or L = Qp for all p. In both cases,

we need to assume that ℓ ∤ 2[L : Qp].
(2) The groups GUn or Un for n odd and defined with respect to an unramified quadratic exten-

sion E/Qp, and ℓ ̸= 2.
(3) The group ResL/Qp

(GU2) defined with respect to an unramified quadratic extension L′/L,
and ℓ such that ℓ ∤ [L : Qp].

(4) The group ResL/Qp
(GLn) for all p and ℓ such that ℓ ∤ [L : Qp].

Proof. We first start with the conditions on ℓ. If G is of type An then all ℓ are very good. However,
when G is a unitary group with n > 2, we also need to impose the additional assumption that the
action of WQp on Ĝ is of order prime to ℓ, and this gives us the condition that ℓ ̸= 2. Similarly, this
gives rise to the condition that ℓ ∤ [L : Qp] in all of the cases. If G = ResL/Qp

(GSp4) then it is of
type C and we also need to impose the additional condition that ℓ ̸= 2.

Now, we turn to Assumption 4.4 (1). For GLn, this follows from [FS21, Theorem I.9.6]
and [HKW22, Theorem 1.0.3], where LLCb is given by the Harris-Taylor correspondence. For
ResL/Qp

(GSp4) and L/Qp as described above, this follows from [Ham21, Theorem 1.1], where LLCb
is given by Harris-Taylor for the non-basic b and Gan-Takeda [GT11] and Gan-Tantono [GT14] for
the basic elements6. For Un or GUn, this is [BHN22, Theorem 1.1], where LLCb for b ∈ B(G) was
constructed by Mok [Mok15] and Kaletha-Minguez-Shin-White [Kal+14]. For GU2 this follows from
the compatibility for GL2, and the fact that the Fargues-Scholze local Langlands correspondence is
compatible with taking products as well as maps G′ → G that induces an isomorphism of adjoint
groups [FS21, Theorem I.9.6 (v), (vi)].

Now we explain why Assumption 4.4 (2) is satisfied. We recall that if Jb is a non quasi-split group
then the fibers of the LLCb over an L-parameter ϕ : WDQp → LG(Qℓ) should be empty if ϕ factors
through LM(Qℓ) for a Levi subgroup M ⊂ G which does not transfer to a Levi subgroup of Jb. In
particular, such parameters are called irrelevant, and we expect the fiber to be empty if and only if
ϕ is irrelevant [Kal16, Conjecture A.2]. For the Harris-Taylor correspondence, it is know that the
fibers over irrelevant parameters are empty by the standard properties of Jacquet-Langlands. For
GUn or Un, odd unitary groups and their Levi subgroups are always quasi-split, so it is reduced to

6In the current version of [Ham21], the assumption that p > 2 is only used to invoke basic uniformization of abelian
type Shimura varieties, but when L = Qp one can just use Rappoport-Zink uniformization, so this assumption is
unnecessary.
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the previous case of GLn using compatibility of the correspondence with parabolic induction. For
GSp4, one needs to show this for LLCGU2(D), where GU2(D) is the unique non-split inner form
of GSp4. Here this follows from the construction of Gan-Tantono (See the discussion before the
main Theorem in [GT14]). For GU2, we observe that since GU2, H,GL2 all have the same adjoint
group, b′ ∈ B(GU2)un is unramified exactly when b is unramified with notation as in Lemma 4.9.
Now, let T̃ be a maximal split torus of GL2, and observe that T ′ = (T̃ × ResL′/LGm)/Gm is a
maximal torus of GU2 over L. Given πb′ = (π̃, χ), and ϕπb′ : WDL → LJb′(Qℓ), we see from the
construction that this factors through LT ′(Qℓ) exactly when the associated L-parameter for H,
ϕ(π̃,χ) : WDL → LJb(Qℓ), factors through LT (Qℓ), where T = T̃ × ResL′/LGm. Since Assumption
4.4 (2) is clearly compatible with taking products, H satisfies this assumption, and thus so does
GU2.

Now we explain why Assumption 4.4 (3) is satisfied. First, note that any parameter ϕ : WDQp →
LG(Qℓ) induced from a toral parameter ϕT has necessarily trivial monodromy, since LT (Qℓ) consists
only of semi-simple elements. Moreover, since Jb is an inner form of Mb, it follows that the set of all
distinct conjugacy classes of parameters ϕ′ : WDQp → LJb(Qℓ) which can give rise to ϕ under the
twisted embedding LJb(Qℓ)→ LG(Qℓ) are parameterized by a set of minimal length representatives
of Wb = WG/WMb

via conjugating ϕ′. We expect (See [Kal16, Conjecture A.5]) that the fiber of
LLCb over such a ϕ′ inducing ϕ to be the irreducible constituents of the normalized induction of
the L-packet of ϕwT , which is just χw by local class field theory for w ∈ Wb. This is indeed true in
all the cases we consider (See for example [BHN22, Section 2.3.3] for this discussed in the case of
unitary groups, and for GSp4 and its unique non-split inner form GU2(D) it follows directly from
the construction). We note that the twists by δ

−1/2
Pb

appear to account for the half Tate twists
appearing in the definition of the twisted embedding LJb(Qℓ) → LG(Qℓ). For GU2, we see that
when b′ is unramified, we have isomorphisms of flag varieties

Jb′/Bb′ ≃ Jb̃/Bb̃ ≃ Jb/Bb.

In the above situation where ϕπb′ factors through LT ′, we see that since H,GL2 satisfy Assumption
4.4 (3), the corresponding representation of H(L) is of the form (π̃, χ), where π̃ is an irreducible
constituent of iJb̃Bb̃

(χw1 ) ⊗ δ
−1/2
Pb̃

, for the associated character χ1 of T̃ . In particular, we see that πb′

is a constituent of iJb′Bb′
(χw1 ⊗ χ)⊗ δ

−1/2
Pb′

, as desired. □

We now turn our attention to deriving our desired consequences.

4.2. Perverse t-exactness. We recall that BunbG ≃ [∗/Jb], where Jb := Aut(Eb) is the group
diamond parameterizing automorphisms of the bundle Eb attached to b ∈ B(G) on X. The diamond
Jb has pure cohomological ℓ-dimension over the base (in the sense of [FS21, Definition IV.1.17])
equal to ⟨2ρG, νb⟩, where νb is the slope homomorphism of b. Moreover, we have that BunG is
cohomologically smooth of pure ℓ-dimension equal to 0 over the base. This motivates the following
definition.

Definition 4.11. We define a perverse t-structure (pD≤0(BunG,Fℓ), pD≥0(BunG,Fℓ)) on
D(BunG,Fℓ) such that A ∈ D(BunG,Fℓ) lies in pD≤0(BunG,Fℓ) (resp. pD≥0(BunG,Fℓ)) if and
only if j∗b (A) (resp. j!b(A)) sits in cohomological degrees ≤ ⟨2ρG, νb⟩ (≥ ⟨2ρG, νb⟩).

For ϕ induced from a generic toral parameter, we write (pD≥0(BunG,Fℓ)ϕ, pD≤0(BunG,Fℓ)ϕ) for
the restriction of this t-structure to D(BunG,Fℓ)ϕ. Let Perv(BunG,Fℓ)ϕ denote the heart. We are
almost ready to formulate our first big result. To do this, we need the following definition.
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Definition 4.12. We say that ϕT is weakly normalized regular if it is generic and if χ denotes the
character attached to ϕT under local class field theory, we have, for all w ∈WG non-trivial, that

(15) χ⊗ δ1/2B ̸≃ (χ⊗ δ−1/2B )w

holds and similarly for χ replaced by χw0 . Similarly, we say ϕT is regular if for all w ∈WG non-trivial
we have that χ ̸≃ χw.

To motivate this, we recall that, since ϕT is weakly normalized regular, we have by [Ham22,
Theorem 10.10] an object nEis(SϕT ) ∈ Perv(BunG,Fℓ), which is a perverse filtered Hecke eigensheaf
on BunG, assuming 4.4 holds. Moreover, it is supported on the set of unramified elements and, for
b ∈ B(G)un, its stalks are given by

Redtwb,ϕ :=
⊕
w∈Wb

ρb,w[−⟨2ρG, νb⟩],

where we recall that ρb,w := iJbBb
(χw)⊗δ−1/2Pb

. In particular, by Proposition 4.5 it defines an object in
the localized category Perv(BunG,Fℓ)ϕ. To show the desired perverse t-exactness property, we would
like to use the Hecke eigensheaf property of nEis(SϕT ). Given a geometric dominant cocharacter µ,
we consider the highest weight tilting module Tµ attached to µ. We let

Tµ : D(BunG,Fℓ)→ D(BunG,Fℓ)BWEµ

be the Hecke operator attached to the representation Tµ, where Eµ denotes the reflex field of µ. The
sheaf Tµ(nEis(SϕT )) carries a filtration which, if it splits, guarantees an isomorphism nEis(SϕT ) ⊠
rµ ◦ ϕ ≃ Tµ(nEis(SϕT )), and we say that ϕT is µ-regular ([Ham22, Definition 10.11]) if such a
splitting exists. Here rµ : Ĝ→ GL(Tµ) is the map defined by the tilting module Tµ. The condition
of being µ-regular is guaranteed by the following stronger condition, using [Ham22, Theorem 1.17].

Definition 4.13. We write (−)Γ : X∗(TQp
) → X∗(TQp

)/Γ for the natural map from geometric
cocharacters to their Γ-orbits. For a toral parameter ϕT :WQp → LT (Fℓ) and a geometric dominant
cocharacter µ, we say ϕT is strongly µ-regular if the Galois cohomology complexes

RΓ(WQp , (ν − ν ′)Γ ◦ ϕT )

are trivial for ν,ν ′ defining distinct Γ-orbits of weights in the highest weight tilting module Tµ.

Remark 4.14. In particular, strong µ-regularity implies µ-regularity, and if we know strong µ-
regularity then it implies µ′-regularity for any Tµ′ which occurs as a direct summand of the tensor
product T ⊗nµ , by [Ham21, Proposition 10.12]. Also, as we will see, strong µ-regularity is often
implied by generic for some suitably chosen µ.

More importantly, we can use this to deduce the following.

Proposition 4.15. For any ϕ induced from a generic ϕT , assume, for all b ∈ B(G)un and w ∈Wb,
the representations ρb,w are semi-simple, and that Assumption 4.4 is true. Then we have a direct
sum decomposition ⊕

b∈B(G)un

Dadm(BunbG,Fℓ)ϕ ≃ DULA(BunG,Fℓ)ϕ,

where Dadm(BunbG,Fℓ) ⊂ D(BunbG,Fℓ) ≃ D(Jb(Qp),Fℓ) denotes the subcategory of admissible
complexes.

Moreover, for any A ∈ DULA(BunbG,Fℓ)ϕ ≃ Dadm(Jb(Qp),Fℓ)ϕ, we have that the ! and ∗
pushforwards agree with respect to the inclusion jb : Bun

b
G → BunG.
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Proof. The first part of the Proposition follows from the second part. To see this, we use the
semi-orthogonal decomposition of D(BunG,Fℓ) into D(BunbG,Fℓ) ≃ D(Jb(Qp),Fℓ) via the excision
spectral sequence. Using that the ! and ∗-pushforwards agree for all objects A ∈ D(BunbG,Fℓ)ϕ,
we see that the excision spectral sequence degenerates and the first part of the claim follows. To
see the second part, we now use Proposition 4.5 to see that an object A ∈ D(BunG,Fℓ)ϕ can only
be supported on the HN-strata BunbG for b ∈ B(G)un, and that the restriction of A to BunbG has
irreducible constituents valued in subquotients of the representations ρb,w for w ∈Wb varying. For
the representations ρb,w, we have the following.

Proposition 4.16. [Ham22, Proposition 11.13] For all b ∈ B(G)un and w ∈Wb, the natural map

jb!(ρb,w)→ Rjb∗(ρb,w)

is an isomorphism assuming ϕT is weakly normalized regular and assumption 4.4 is true.

So the ! and ∗ pushforwards agree on the ρb,w, and, since we are assuming the representations
ρb,w are semisimple, the claim follows for any constituent of ρb,w. This is enough to conclude the
claim for any A ∈ DULA(BunbG,Fℓ)ϕ ≃ Dadm(Jb(Qp),Fℓ)ϕ using the following claim.

Lemma 4.17. Assuming 4.4, for ϕ a generic parameter and any A ∈ Dadm(Jb(Qp),Fℓ)ϕ the coho-
mology of A has finite length.

Proof. By Assumption 4.4, we know that any irreducible constituent of the cohomology of A is an
irreducible constituent of ρb,w for some w ∈ Wb. It follows by [Vig96, p. II.5.13] that there are
only finitely many possibilities for the irreducible constituents. Therefore, by choosing K ⊂ G(Qp)
a sufficiently small open compact such that all these representations have an invariant vector, we
deduce, sinceAK is a perfect complex by assumption, thatAmust have finite length cohomology. □

□

We note that the semi-simplicity of ρ1,1 = iGB(χ) is implied by the conditions discussed above.

Lemma 4.18. Let ϕT : WQp → LT (Fℓ) be a weakly normalized regular and regular. Suppose there
exists a µ which is not fixed under any w ∈WG and ϕT is µ-regular. Then, iGB(χ) is irreducible.

Proof. It follows, by [Ham22, Corollary 11.23] and the assumed µ-regularity, that we have an iso-
morphism iGB(χ) ≃ iGB(χ

w) = iGBw(χ) for all w ∈ WG. Here Bw is the conjugate of B by w. We
write rGB for the normalized parabolic restriction functor. We recall that we are working with ℓ-
modular coefficients in possibly non-banal characteristic so iGB(χ) may have cuspidal constituents.
In particular, we will need the following lemma.

Lemma 4.19. Let w0 ∈ WG be the element of longest length. For a character χ : T (Qp) → F∗ℓ , if
we have an isomorphism iGB(χ) ≃ iGB(χw0) of G(Qp)-modules then any non-zero quotient σ′ of iGB(χ)
satisfies rGB(σ

′) ̸= 0

Proof. We apply second adjointness [Dat+22, Corollary 1.3] to the map

iGBw0 (χ)
≃−→ iGB(χ)→ σ′

to conclude the existence of a non-zero map χ→ rGB(σ
′), which implies the claim. □

Now suppose for the sake of contradiction that iGB(χ) is not irreducible. Then there exists an
exact sequence

0→ σ → iGB(χ)→ σ′ → 0.

Since parabolic restriction is exact (for example by using second adjointness), we get an exact
sequence

0→ rGB(σ)→ rGBi
G
B(χ)→ rGB(σ

′)→ 0.
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This allows us to conclude an equality of lengths of representations:

ℓ(rGB(σ)) + ℓ(rGB(σ
′)) = ℓ(rGB(i

G
B(χ))) ≤ |WG|,

where the inequality follows from the geometric Lemma [Dat05, Section 2.8]7. By the previous
lemma, we conclude that ℓ(rGB(σ)) < WG. Now, since we know that σ ⊂ iGB(χ) ≃ iGB(χ

w) for all
w ∈ WG, Frobenius reciprocity implies that we have non-zero maps rGB(σ) → χw for all w ∈ WG.
This gives a contradiction by the regularity of χ. □

We now have the following key claim.

Theorem 4.20. Let µ be a geometric dominant cocharacter. We write

Tµ : D(BunG,Fℓ)→ DBunG,Fℓ)BWQp

for the Hecke operator attached to the highest weight tilting module Tµ of highest weight µ. Then
the operator restricted to DULA(BunG,Fℓ)ϕ is perverse t-exact if ϕT is weakly normalized regular,
Assumption 4.4 is true, the ρb,w are semi-simple for all b ∈ B(G)un and w ∈Wb, and ϕT is µ-regular.

Proof. Using Lemma 4.17, the commutation of Hecke operators with colimits, Proposition 4.5,
Proposition 4.15, and semi-simplicity of the representations ρb,w, we can reduce to showing, for all
b ∈ B(G)un, that if we consider the complex

Redtwb,ϕ :=
⊕
w∈Wb

iJbBb
(χw)⊗ δ−1/2Pb

[−⟨2ρG, νb⟩] ∈ Perv(BunG,Fℓ)ϕ

then we have a containment

Tµ(jb!(Red
tw
b,ϕ)) ∈ Perv(BunG,Fℓ)ϕ

for the fixed µ. However, Redtwb,ϕ are the stalks of the perverse filtered Hecke eigensheaf nEis(SϕT )
and, since ϕT is µ-regular by assumption, we have an isomorphism:

Tµ(nEis(SϕT )) ≃ nEis(SϕT )⊠ rµ ◦ ϕ ∈ Perv(BunG,Fℓ)
BWEµ

ϕ .

This gives the desired claim. □

We are almost ready to deduce the result we need for torsion vanishing. To do this, we will first
need to discuss when the additional assumptions of weak normalized regularity and µ-regularity are
superfluous, possibly under certain assumptions on ℓ.

4.3. Verification of additional assumptions. We first need the following lemma which will allow
us to base change to splitting fields.

Lemma 4.21. Let G be a quasi-split connected reductive group with splitting field E. If ϕT is
generic then RΓ(WE , α̃ ◦ ϕT |WE

) is trivial for all absolute coroots α̃ ∈ X∗(TQp
).

Proof. We recall that, given a Γ-orbit of positive absolute coroots α ∈ X∗(TQp
)+\Γ, if Eα denotes

the reflex field of α then the representation of LT defined by α is given by choosing a representative
α̃ ∈ X∗(TQp

)+ of α, and inducing the representation of T̂ ⋊WEα/WE defined by it to WQp/WE .
This reduces the claim to Schapiro’s Lemma. □

Other than the groups listed in Theorem 4.10, there are two more groups of interest to us. We
will define them now.

Let L/Qp be a finite extension. We have the similitude maps from GLn (resp. GSp4)

ν : ResL/Qp
GLn → ResL/Qp

Gm

7Note that this bound however fails without taking normalized restriction because of the aforementioned cuspidal
constituents of iGB(χ) in non-banal characteristic (cf. [Dat05, Page 48]).
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(resp.
ν : ResL/Qp

GSp4 → ResL/Qp
Gm).

We thus define
G(SLn,L) := ResL/Qp

GLn ×ν Gm,

G(Sp4,L) := ResL/Qp
GLn ×ν Gm.

Lemma 4.22. Let L/Qp be a finite extension and G be one of the following groups:
(1) ResL/Qp

Un,
(2) ResL/Qp

GUn,
(3) ResL/Qp

GLn,
(4) G(SLn,L).

If ϕT is a generic toral parameter for G then ϕT is weakly normalized regular and regular. Moreover,
for (1) − (3), ϕT will be µ-regular for all µ, while, for (4), ϕT will be µ-regular for µ which are of
the form

∏
τ :L↪→Qp

µ′ for µ′ a cocharacter of GLn.

Proof. We establish weak normalized regularity, and suppress giving the proof that ϕT is regular
as it is strictly easier. We note that since the condition of being generic is invariant under flipping
the role of positive and negative roots, genericity implying that χ ⊗ δ1/2B ̸≃ χ ⊗ δ−1/2B for w ∈ WG

non-trivial implies also that χw0 ⊗ δ1/2B ̸≃ (χw0 ⊗ δ−1/2B )w, so it suffices to check the former.
For cases (1), (2), and (3), we may assume for simplicity that L = Qp with the proof in general

essentially being the same. If G = GLn then this is [Ham22, Lemma 3.10].
We now consider the case of G = Un defined with respect to a quadratic extension E/Qp. Suppose

there exists a non-trivial w ∈WG such that we have an isomorphism:

χ⊗ δ1/2B ≃ (χ⊗ δ−1/2B )w

of characters on T (Qp). We recall that GE ≃ GLn,E where E/Qp denotes the quadratic extension
defining the unitary group. By the definition of the modulus character in terms of the transformation
character of Haar measures, we observe that the precomposition of δB with the Norm map T (E)→
T (Qp) gives the modulus character on the Borel of GLn,E . Therefore, by precomposing the previous
isomorphism with this norm map, we obtain an analogous relationship of characters on the torus
T (E), which is the maximal torus of GLn,E . Then Lemma 4.21 reduces us to the GLn case.

The case of GUn similarly reduces to the Un case by setting the coordinate on T (Qp) correspond-
ing to the similitude factor to be equal to 1.

For case (4), let d = [L : Qp]. Observe that we have an isomorphism G(SLn,L)L ≃ HL, where

H =

(gi) ∈
∏

L↪→Qp

GLn : det(gi) = det(gj) ∀i, j

 .

Applying Lemma 4.21 again and arguing as for unitary groups, it suffices to work with HL. We
assume L = Qp for notation simplicity. The maximal torus T ′ in H can be identified with

Gd
m ×Gm,

via the map (t1, . . . , td, t) 7→ (diag(ti, tt
−1
i )). Since WH =

∏
WGL2 , consider any element w′ ∈ WG,

which we assume for notational simplicity is of the form

(w, . . . , w, id, . . . , id),

where w is the non-trivial element of the Weyl group of GL2, and we have w in the first k entries,
for some integer 0 ≤ k ≤ d. The general case follows similarly. Observe that the isomorphism

χ⊗ δ1/2B ≃ (χ⊗ δ−1/2B )w
′
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becomes
k∏
i=1

χi1(t
2
i t
−1)χi2(tt

−2
i ) ≃

d∏
i=k+1

|t−2i t|.

If we substitute t = x, ti = x for i = 1, . . . , k, while for k + 1 ≤ i ≤ d we set ti = 1 if i − k is odd
and ti = x if i− k is even, we see that we get

∏k
i=1 χi1(x)χ

−1
i2 (x) is isomorphic to either the trivial

representation 1 or | · |, which is a contradiction to genericity.
We now show µ-regularity. Again, for cases (1), (2), and (3), observe that if G is of the form

ResL/Qp
G′ and T ′ denotes the maximal torus of G′ then we have an isomorphism

X∗(TQp
) ≃

∏
ϕ∈HomQp (L,L)

X∗(T ′L)

where L is an algebraic closure of L. Using this, we can without loss of generality assume that L =
Qp. In the case that G = GLn,Un, or GUn, this follows as in the proof of [Ham22, Corollary 10.16].
We recall briefly how this goes.

One can consider the geometric dominant cocharacter µ = (1, 0, . . . , 0, 0) of GLn. This defines the
standard representation Vstd of Ĝ ≃ GLn. This cocharacter is in particular minuscule so the weights
form a closed Weyl group orbit with representative (1, 0, . . . , 0, 0). From here, it easily follows that
the difference of the weights appearing in Vstd define coroots of G. In particular, it follows that,
if ϕT is generic then it is strongly µ-regular for µ = (1, 0, . . . , 0) in the sense of Definition 4.13,
and this implies the filtration on Tµ(nEis(SϕT )) splits by [Ham22, Theorem 10.10] for this µ. Now,
the tilting modules Tωi = Λi(Vstd) attached to the other fundamental coweights ωi = (1i, 0n−i) of
G can be realized as direct summands of V ⊗istd , and it follows that ϕT is µ-regular for µ = ωi by
[Ham22, Proposition 10.12]. Since any dominant cocharacter can be written as a linear combination
of fundamental weights, the claim for any µ now follows from [Ham22, Corollary 10.13]. The case
of GUn and Un follows in a very similar way, using Lemma 4.21.

For case (4), observe that as before, we can base change to L, and since H is a subgroup of
∏

GLn,
all cocharacters µ of H define products of cocharacters for GLn. Now, consider a cocharacter of
the form µ =

∏
τ µτ , where µτ ′ = µτ for all τ, τ ′ and µτ is a cocharacter of GLn. Note that every

dominant minuscule cocharacter of H will be of this form. This is because a cocharacter µ =
∏
τ µτ

of
∏

GLn factors through H exactly when the composition with the determinant is equal for all
τ , and we see that for µ to be minuscule, µτ must be one of the fundamental coweights ωi, which,
after composing with the determinant, give different characters for i ̸= j. Now, we observe that the
same argument as above holds to show that the difference of Weyl conjugates define a coroot of H
for the cocharacter µ1 =

∏
(1, 0, . . . , 0), while for all other cocharacters of the form µ =

∏
µ′, where

µ′ is a fundamental weight of GLn, they appear as weights in some tensor power of the highest
weight representation corresponding to µ1. The claim for any µ =

∏
µ′, where µ′ is a dominant

cocharacter of GLn, follows by the same argument as above, using [Ham22, Corollary 10.13]. □

Lemma 4.23. Let L/Qp be a finite extension, and G be one of the following groups:
(1) ResL/Qp

GSp4
(2) G(Sp4,L).

Suppose moreover that ℓ ̸= 2 and ℓ is banal with respect to L (i.e. (q4−1, l) = 1, where q is the size of
the residue field of L). If ϕT is a generic toral parameter for G then ϕT is weakly normalized regular
and regular. Moreover, for (1), ϕT will be µ-regular for all µ, and, for (2), ϕT will be µ-regular for
µ which are of the form

∏
τ :L↪→Qp

µ′ for µ′ a cocharacter of GSp4.

Proof. We will first establish weak normalized regularity, and again suppress giving the proof that
ϕT is regular as it is strictly easier. We recall that genericity implying that χ ⊗ δ1/2B ̸≃ χ ⊗ δ−1/2B

for w ∈WG non-trivial implies also that χw0 ⊗ δ1/2B ̸≃ (χw0 ⊗ δ−1/2B )w, since being generic is stable
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under switching the roles of positive and negative roots, so it suffices to check the former. Again,
for (1), we assume that L = Qp for this part with the proof in general being more or less the same.
We will show this by contradiction. Suppose on the contrary that there exists some w ∈ WG such
that we have an isomorphism

(16) χ⊗ δ1/2B ≃ (χ⊗ δ−1/2B )w.

For case (1), consider the following parametrization of the maximal torus T

(17) a : (Q∗p)2 ×Q∗p → T (Qp)

(t1, t2, t) 7→


t1 0 0 0
0 t2 0 0
0 0 tt−12 0
0 0 0 tt−11


as in [Tad94, Page 135]. This allows us to write the character χ : T (Qp)→ F∗ℓ as χ1(t1)χ2(t2)ν(t),
for characters Q∗p → F∗ℓ . Similarly, we can express the modulus character as

δB(t1, t2, t) = |t1|4|t2|2|t|−3

where | · | is the norm character. We now check that (16) cannot hold for all seven non-trivial
elements of the Weyl group.

Consider the Weyl group element corresponding to the translation:

w1 : a(t1, t2, t) 7→ a(t2, t1, t)

If we consider equation (16) with respect to this element and evaluate on (x, 1, x) = (t1, t2, t) then
we obtain the equation

χ1(x)|x|2|x|−3/2 ≃ χ2(x)|x|−1|x|3/2

which gives an isomorphism χ1χ
−1
2 (x) ≃ 1 contradicting genericity.

Similarly, if we consider the simple Weyl group element

w2 : a(t1, t2, t) 7→ a(t1, t
−1
2 t, t)

then evaluating equation (16) for this relationship reduces to

χ1(t1)χ2(t2)ν(t)|t1|2|t2||t|−3/2 ≃ χ1(t1)χ2(t
−1
2 t)ν(t)|t1|−2|t2||t|−1|t|3/2

cancelling terms we obtain that
χ2(t)

−1χ2(t2)
2 ≃ |t1|−4|t|2

so if we evaluate at (t1, t2, t) = (x3, x2, x4) then we obtain

1 ≃ |x|−4

which contradicts the assumption that (p4 − 1, ℓ) = 1.
Consider now the Weyl group element

w3 : a(t1, t2, t) 7→ a(t−12 t, t1, t)

if we evaluate equation (16) then we obtain

χ1(t1)χ2(t2)ν(t)|t1|2|t2||t|−3/2 ≃ χ1(t2)
−1χ1(t)χ2(t1)ν(t)|t2|2|t|−2|t1|−1|t|3/2

rearranging and cancelling terms we obtain

χ1χ
−1
2 (t1)χ2χ1(t2)χ1(t)

−1 ≃ |t1|−3|t2||t|
so if we evaluate at (t1, t2, t) = (1, 1, x) we obtain that

χ−11 (x) ≃ |x|



40 LINUS HAMANN AND SI YING LEE, WITH AN APPENDIX BY DAVID HANSEN

which contradicts genericity (See [Tad94, Page 167] for the enumeration of 1-parameter subgroups
attached to the coroots in the parametrization (17). Note that we could also have substituted
(t1, t2, t) = (x, x, x) to obtain

χ1(x) ≃ |x|−1.
Consider the reflection

w4 : a(t1, t2, t) 7→ a(t−11 t, t2, t)

then equation (16) becomes

χ1(t1)χ2(t2)ν(t)|t1|2|t2||t|−3/2 ≃ χ1(t
−1
1 t)χ2(t2)ν(t)|t1|2|t|−2|t2|−1|t|3/2

which gives
χ1(t

2
1)χ1(t)

−1 ≃ |t2|−2|t|
so if we evaluate at (t1, t2, t) = (1, 1, x), this becomes

χ1(x)
−1 ≃ |x|

which contradicts genericity. Note that we could also have substituted (t1, t2, t) = (1, x, x) to obtain

χ1(x)
−1 ≃ |x|−1.

Now consider the Weyl group element

w5 : a(t1, t2, t) 7→ a(t2, t
−1
1 t, t)

then equation (16)

χ1(t1)χ2(t2)ν(t)|t1|2|t2||t|−3/2 ≃ χ1(t2)χ2(t
−1
1 t)ν(t)|t2|−2|t1||t|−1|t|3/2

which simplifies to
χ2χ

−1
1 (t2)χ1χ2(t1)χ2(t)

−1 ≃ |t1|−1|t2|−3|t|2

so if we evaluate at (t1, t2, t) = (x, 1, x) then this gives

χ1(x) ≃ |x|
which contradicts genericity. Note that we could also have substituted (t1, t2, t) = (1, x, x) to obtain

χ−11 (x) ≃ |x|−1.
Now consider the Weyl group element

w6 : a(t1, t2, t) 7→ a(t−11 t, t−12 t, t)

then equation (16) becomes

χ1(t1)χ2(t2)ν(t)|t1|2|t2||t|−3/2 ≃ χ1(t
−1
1 t)χ2(t

−1
2 t)ν(t)|t1|2|t|−2|t2||t|−1|t|3/2

which simplifies to
χ2
1(t1)χ

2
2(t2)χ1χ2(t)

−1 ≃ 1

so if we evaluate at (t1, t2, t) = (1, 1, x) then this becomes

χ1χ2(x) ≃ 1

which contradicts genericity.
Now finally we consider

w7 : a(t1, t2, t) 7→ a(t−12 t, t−11 t, t)

then equation (16) becomes

χ1(t1)χ2(t2)ν(t)|t1|2|t2||t|−3/2 ≃ χ1(t
−1
2 t)χ2(t

−1
1 t)ν(t)|t2|2|t|−2|t1||t|−1|t|3/2

which simplifies to
χ1χ2(t1)χ1χ2(t2)χ1χ2(t

−1) ≃ |t1|−1|t2|
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evaluated at (t1, t2, t) = (1, 1, x) simplifies to

χ1χ2(x) ≃ 1

which contradicts genericity.
This concludes our discussion of weakly normalized regularity for ResL/Qp

GSp4.
We now turn to the case of G(Sp4,L). As in the proof of the previous lemma, observe that if we

let

(18) H = {(gi) ∈
∏

L↪→Qp

GSp4 such that ν(gi) = ν(gj),∀i, j},

then we have HL ≃ G(Sp4,L)L. Thus, we may reduce to the case of H. Since H ⊂
∏

GSp4, we
may also use the parametrization in [Tad94, p. 135] to see that the maximal torus T ′ is given by a
parametrization

(Q∗p)2d ×Q∗p → T ′(Qp),

((tτ1, tτ2)τ :L↪→Qp
, t) 7→


tτ1 0 0 0
0 tτ2 0 0
0 0 tt−1τ2 0
0 0 0 tt−1τ1


τ :L↪→Qp

where we note that the common similitude factor is the last coordinate t.
Since δB is just the restriction of the character for the Borel of

∏
GSp4 from the torus

∏
T to

T ′, we see that the modulus character is

δB((tτ1, tτ2)τ , t) = |t|−3d
∏
τ

|tτ1|4|tτ2|2.

Since WG =
∏
τ WGSp4 , consider any element w = (wτ ) ∈ WG, where wτ ∈ WGSp4 . Observe

that the expression obtained from the isomorphism (16) for w = (wτ ) is simply the product of the
isomorphisms for GSp4 each wτ . Thus, if we wanted to argue by contradiction, using the notation
of the proof above, when wτ = wi for i = 1, . . . , 7, we should substitute for tτ1, tτ2, t the values we
considered above, subject to the additional constraint that we must have t, the similitude factor,
being equal for all τ .

We thus have two possibilities: either some wτ is the Weyl group element w2 (i.e. corresponding
to the reflection

w2 : a(t1, t2, t) 7→ a(t1, t
−1
2 t, t)

or none of the wτ are this element.
In the first situation, suppose that for some τ , wτ is the Weyl reflection w2. If we consider the

equation (16), evaluated on the element tτ1 = x, tτ2 = x2,and tτ ′1 = tτ ′2 = x2, t = x4 for all τ ′ ̸= τ ,
then equation (16) simplifies to

(19) 1 ≃ |x|−4,

since one can check that substituting t1 = t2 = x2, t = x4 into the isomorphism (16) for GSp4 for all
the Weyl elements not equal to w2 above simply gives the isomorphism 1 ≃ 1 after simplification,
and thus does not matter when taking products). This contradicts the banality assumption that
(p4 − 1, ℓ) = 1.

Now, we suppose we are in the second situation, i.e. no wτ = w2. For any w = (wτ ), let
J = {τ : L ↪→ Qp : wτ = id, w3, w4, w5}, and J ′ = {τ : L ↪→ Qp : wτ ̸= id, w3, w4, w5}. For some
choice of ((tτ1, tτ2)τ , t) we see the equation (16) becomes

(20)
∏
τ∈J ′

χτ1χτ2
∏
τ∈J

χ−1τ1 ≃ 1
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or

(21)
∏
τ∈J ′

χτ1χτ2
∏
τ∈J

χ−1τ1 ≃ | · |

which contradicts genericity. Indeed, if we chose some ((tτ1, tτ2)τ , t) for each wτ such that we
derived a contradiction in the case of GSp4 as above, then we see that the right-hand side of the
isomorphism (16) simplifies to | · |n, for some n. If n ̸= 0, 1, then we see that by changing the values
of (tτ1, tτ2) for some τ ∈ J , to the other choice of substitution, the right-hand side evaluates to
| · |n−2, and continuing this process as necessary we get either equation (20) or (21).

We now show µ-regularity. As in the proof of the previous lemma, for case (1) it suffices to check
the claim when G = GSp4, the Langlands dual group is given by GSpin5, which is isomorphic to
GSp4. The spin representation

spin : GSpin5 → GL4(Vspin)

defines a minuscule highest weight representation, which, under the isomorphism GSpin5 ≃ GSp4,
identifies with the defining representation of GSp4. From here it is easy to see that the differences
of the weights are roots of GSp4 (= coroots of GSpin5). For example, by using the parametrization
of the maximal torus, as in (17), and the description of the roots in this parametrization provided
on [Tad94, Page 167]. Therefore, genericity guarantees strong µ-regularity for this representation
which implies µ-regularity as before. The other fundamental tilting module of GSpin5 is given by
the defining representation GSpin5 → SO5 → GL5 assuming ℓ ̸= 2 (See [Ham22, Appendix B]).
Moreover, this occurs as a 5-dimensional summand of Vspin ⊗ Vspin, and it follows by [Ham22,
Proposition 10.12] that we know µ-regularity for this representation as well. Therefore, since we
know µ-regularity for the fundamental coweights, we are now done by [Ham22, Corollary 10.13] as
before.

Now, for case (2), note that, as in the previous lemma, all cocharacters of H are of the form
µ =

∏
τ µτ for some cocharacters µτ of GSp4. The argument given above for GSp4 shows that if

we let µ′ be one of the fundamental coweights of GSp4, then if we take µ =
∏
µ′, (i.e. µτ = µ′

for all τ) then we are µ-regular for such µ. Applying [Ham22, Corollary 10.13] again shows that if
µ =

∏
τ µ
′, where µ′ is a dominant cocharacter of GSp4, then ϕT will be µ-regular for such µ. Note

that, as in the case of G(SLn), every dominant minuscule cocharacter of H is of this form. □

Now let us package our final result in a nice form. We first consider the following table, sum-
marizing the groups and primes for which our results apply. We have left the entry blank if no
constraint is imposed, and just mentioned the groups that appear as local constituents of global
groups that admit a Shimura datum and for which G is unramified.

(22)

G Constraint on G ℓ p

ResL/Qp
(GLn) L/Qp unramified (ℓ, [L : Qp]) = 1

ResL/Qp
(GSp4) L = Qp (ℓ, 2(p4 − 1)) = 1

L/Qp unramified (ℓ, 2[L : Qp](p
4[L:Qp] − 1)) = 1 p ̸= 2

ResL/Qp
(GU2) L/Qp unramified (ℓ, [L : Qp]) = 1

G = Un(L/Qp) n odd L unramified ℓ ̸= 2
G = GUn(L/Qp) n odd L unramified ℓ ̸= 2

G(SL2,L) L/Qp unramified (ℓ, [L : Qp]) = 1

G(Sp4,L) L/Qp unramified, L ̸= Qp (ℓ, 2[L : Qp](p
4[L:Qp] − 1)) = 1 p ̸= 2

We now apply Theorem 4.20.
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Corollary 4.24. Assume G is a product of the groups appearing in Table (22) with p and ℓ satisfying
the corresponding conditions. Then, we have that the natural map

j∗1Tµ(−) : DULA(BunG,Fℓ)ϕm → Dadm(G(Qp),Fℓ)ϕm
is exact with respect to the perverse t-structure on the source and the natural t-structure (= perverse
t-structure) on the target for all minuscule µ.

Proof. First note that, using the decomposition BunG1×G2 := BunG1 ×BunG2 , we can assume that
G is isomorphic to one of the groups appearing in Table (22).

Observe that all the groups in Table (22) satisfy Assumption 4.4, where the first five rows follows
from Theorem 4.10, and the last two from Proposition 4.8. We now apply Theorem 4.20. To do
this, we also need to check that if ϕT is a generic toral parameter then is also weakly normalized
regular, and µ-regular for all minuscule µ. This follows from Lemma 4.22 and Lemma 4.23.

Lastly, we need to check that the representations ρb,w := iJbBb
(χw)⊗ δ−1/2Pb

are semi-simple for all
b ∈ B(G)un and w ∈Wb. We claim that they are in fact irreducible. Recall that Jb ≃Mb ⊂ G, where
Mb is a Levi of G. Moreover, we note that any such Levi Mb is a product of groups also appearing in
(22). Therefore, the desired irreducibility follows from the µ-regularity, weak normalized regularity,
and regularity of ϕT combined with Lemma 4.18. Note that in the case of G(SL2,L) and G(Sp4,L),
we can always find a cocharacter µ of the form

∏
τ µ
′ which is not fixed by the Weyl group, since

we can simply look at any cocharacter of µ′ of GL2 (resp. GSp4) which is not fixed by the Weyl
group, and take µ to be the product of these µ′. □

We also have the following.

Corollary 4.25. Assume G is a product of the groups appearing in Table (22) with p and ℓ satisfying
the corresponding conditions. Then, for m ⊂ Hhs

Kp
a generic maximal ideal, we have that

DULA(BunG,Fℓ)ϕm ≃
⊕

b∈B(G)un

Dadm(Jb(Qp,Fℓ)ϕm .

Moreover, the ! and ∗ pushforwards agree for any A ∈ Dadm(Jb(Qp),Fℓ)ϕm ≃ DULA(BunbG,Fℓ)ϕm
Proof. This follows from Proposition 4.15, where the semisimplicity of the ρb,w follows as in the
proof of the Previous Corollary. □

5. The Proof of Theorems 1.14 and 1.16

5.1. Proof of Theorems 1.15 and 1.17. Throughout this section, we assume (G, X) is a PEL
datum of type A or C such that GQp is a product of simple groups as in Table (1) with p and ℓ
satisfying the corresponding conditions, and that Assumption 1.10 holds.

Proof. (Theorem 1.14) By Corollary 3.17, the complex RΓc(S(G, X)Kp,C ,Fℓ) has a G(Qp) ×WE-
equivariant filtration with graded pieces isomorphic to j∗1Tµjb!(Vb)[−d](−d

2). The cohomology of
Igusa varieties Vb and the global Shimura variety is admissible [Zha23, Proposition 8.21], so we
can apply the results of the previous section to them. We let m be a generic maximal ideal of the
spherical Hecke algebra, and consider the localization

(j∗1Tµjb!(Vb))ϕm [−d](−
d

2
).

This defines a filtration on RΓc(S(G, X)Kp,C ,Fℓ)ϕm . The filtration on RΓc(S(G, X)Kp,C ,Fℓ)ϕm
considered above comes from applying (−)ϕm to RΓ([FℓG,µ−1/G(Qp)], ib!i

∗
b(RπHT!(Fℓ))) viewed as

a G(Qp)-representation. Using Corollary 4.25, we see that these graded pieces are also isomorphic
to

(j∗1Tµjb∗(Vb))ϕm [−d](−
d

2
)
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via the natural transformation jb! → jb∗ and are trivial for b ∈ B(G,µ)un. However, using Lemma
3.14, this implies that the natural map

RΓ([FℓG,µ−1/G(Qp)], ib!i
∗
b(RπHT!(Fℓ)))ϕm → RΓ([FℓG,µ−1/G(Qp)], ib∗i

∗
b(RπHT!(Fℓ)))ϕm

is an isomorphism, using Remark 3.15. Therefore, we see that the edge maps in the excision spectral
sequence actually degenerate after applying (−)ϕm , giving us a direct sum decomposition

RΓc(S(G, X)Kp,C ,Fℓ)ϕm ≃
⊕

b∈B(G,µ)un

j∗1Tµjb!(Vb)[−d](−
d

2
)ϕm .

By applying RΓ(Khs
p ,−) and invoking Lemma 4.2 (3), we obtain that

RΓ(Khs
p , RΓc(S(G, X)Kp ,Fℓ)ϕm) ≃ RΓc(S(G, X)KpKhs

p
,Fℓ)m

has a filtration with graded pieces isomorphic to

RΓ(Khs
p , j

∗
1Tµjb!(Vb))m[−d](−

d

2
).

Just as in the proof of Corollary 3.17, we can rewrite this as

(RΓc(Sht(G, b, µ)∞,C/K
hs
p ,Fℓ(db))m ⊗L

H(Jb)
Vb)[2db],

as desired. □

Proof. (Theorem 1.16) We recall, by Proposition 3.7, that Vb is a complex of smooth
Jb(Qp)-representations concentrated in degree ≤ db. It follows that we have an inclusion⊕

b∈B(G,µ) jb!(Vb)ϕm ∈ pD≤0,ULA(BunG,Fℓ)ϕm , using Proposition A.5. Corollary 4.24 implies that

j∗1Tµjb!(Vb)[−d]ϕm ∈ D≤d(G(Qp),Fℓ)ϕm

after forgetting the Weil group action. Therefore, we conclude that

RΓc(S(G, X)Kp,C ,Fℓ)ϕm

is concentrated in degrees 0 ≤ i ≤ d. By applying Poincaré duality at finite level and Corollary A.7,
this allows us to conclude that the non-compactly supported cohomology

RΓ(S(G, X)Kp,C ,Fℓ)ϕ∨m

localized at ϕ∨m is concentrated in degrees d ≤ i ≤ 2d, where we define this to be the colimit over
the non-compactly supported cohomology of finite levels (cf. Remark 3.1). Moreover, we note that
generic is preserved under the Chevalley involution, since it just exchanges the role of positive and
negative roots. It therefore follows that

RΓ(Khs
p , RΓ(S(G, X)Kp,C ,Fℓ)ϕ∨m)

is also concentrated in degrees ≥ d, but this isomorphic to

RΓ(S(G, X)KpKhs
p ,C ,Fℓ)m∨

by Lemma 4.2 (3). This establishes Theorem 1.16, by applying Poincaré duality to the Shimura
variety at finite level again. □
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5.2. Proof of Corollary 1.18. We would like to obtain the main theorem for Shimura varities of
non-PEL type, especially Hilbert-Siegel modular varieties (attached to ResF/QGL2 or ResF/QGSp4).
We will show this in a more general setup, as follows.

Let (G, X), (G2, X2) be a pair of abelian type Shimura data such that G,G2 are centrally
isogenous, and we have an isomorphism of derived subgroups

Gder ∼−→ Gder
2 ,

as well as adjoint quotients. Consider the associated Shimura varieties Sh(G, X)K and
Sh(G2, X2)K2 , where we choose the level K,K2 such that the level at p, satisfies that we have
an equality Kp ∩Gder(Qp) = K2,p ∩Gder

2 (Qp).
We now assume Kp and K2,p are both hyperspecial. Observe that this implies that K ′p = Kp ∩

Gder(Qp) is also hyperspecial. By the Satake isomorphism, we have an isomorphism of Fℓ-algebras

HKp ≃ Fℓ[X∗(T )]WG ,

and, since G,Gder have isomorphic adjoint groups, the inclusion of cocharacters X∗(T ′) ⊂ X∗(T )
induces an inclusion of Hecke algebras H ′K′p ⊂ HKp , where T ′ denotes the torus T ∩Gder, and H ′K′p
denotes the spherical Hecke algebra for Gder. Moreover, given a maximal ideal m ⊂ HKp , then
m′ = m ∩H ′K′p is a maximal ideal of H ′K′p .

Fix a connected component X+ ⊂ X. This also fixes a X+
2 ⊂ X2, and an isomorphism X+ ≃ X+

2 ,
since G,G2 have isomorphic adjoint quotients. For any compact open subgroup K ⊂ G(Af ), we let
Sh+(G, X)K be the geometrically connected component which is the image of X+ × 1. Moreover,
we will let

Sh+(G, X)Kp = lim←
Kp

Sh+(G, X)KpKp .

Note that since all the transition morphisms are finite étale and hence affine, Sh+(G, X)Kp is also
a qcqs scheme by [Sta23, Lemma 01YX].

Since G,G2 have isomorphic derived subgroups, this implies that we have an isomorphism of
geometric connected components

Sh+(G, X)Kp ≃ Sh+(G2, X
′)K2,p .

Moreover, we see that the action of H ′K′p on Sh(G, X)Kp preserves the geometric connected com-
ponent, since we see that Sh+(G, X)Kp is simply the connected Shimura variety associated to
(Gder, X+). Indeed, we see that the set of C-points of Sh+(G, X)Kp is given by

Gder(Q)
(p),cl
+ \X+ × (Gder(Apf )),

where Gder(Q)
(p),cl
+ denotes the closure in Gder(Apf ) of Gder(R)+ ∩ Gder(Q) ∩ Kp, and Gder(R)+

denotes the preimage of the neutral connected component Gad(R)+ in Gder(R) under the quotient
map.

Following the description of the connected components of Shimura varities from [Del79, §2], and
using the notation of [Kis10, §3.3] we see that there exist groups A (G)◦,A (G2),A (G) such that
we have G(Af ) (resp. G2(Af )) equivariant isomorphisms

Sh(G, X)Kp ≃ [A (G)× Sh+(G, X)Kp/A (G)◦]

and
Sh(G2, X2)K2,p ≃ [A (G2)× Sh+(G, X)Kp/A (G)◦].

Observe that, since A (G)◦ = A (Gder)◦ is a subgroup of A (G2), the Shimura variety
Sh(G2, X2)K2,p is simply an (infinite) union of copies of Sh+(G, X)Kp . Moreover, we see that
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the action of H ′K′p on the right-hand side of the above isomorphism is given by the action on
Sh+(G, X)Kp . In particular, we observe that

H i(Sh+(G, X)Kp ,Fℓ)m′

vanishes if and only if
H i(Sh(G2, X)K2,p ,Fℓ)m′

does as well. We thus have the following proposition.

Proposition 5.1. Suppose that (G, X) is of PEL type A or C satisfying the conditions in Theorem
1.16. Then, Conjecture 1.2 also holds for (G2, X2).

Proof. Since Conjecture 1.2 is true for (G, X), we will first show that a maximal ideal m of HKp is
generic if and only if the maximal ideal m′ of H ′K′p is generic. To see this, we will reformulate this
in terms of L-parameters. This is equivalent to showing that an L-parameter

ϕ :WQp → LT (Fℓ)

is generic if and only if the composition ϕ′ with the map g : LT (Fℓ) → LT ′(Fℓ) induced by the
inclusion of tori T ′ ↪→ T is generic. (Here, T ′ = Gder ∩ T ). This follows from the observation that
any coroot α factors through Gder, and hence the composition α ◦ ϕ is equal to α ◦ ϕ′.

Now, we consider the limit
Sh(G, X) := lim←

Kp

Sh(G, X)Kp .

Note that since all schemes appearing in the limit are qcqs, by [Sta23, Theorem 09YQ] we have an
isomorphism of cohomology groups

H i(Sh(G, X),Fℓ) ≃ lim→
Kp

H i(Sh(G, X)Kp ,Fℓ).

We now have the following lemma.

Lemma 5.2. Let G′ → G be a map inducing an isomorphism on adjoint groups with g : LG→ LG′,
the induced map on dual groups. For ϕ :WQp → LG(Fℓ) a L-parameter and A an admissible complex
of G(Qp)-modules, there is a natural isomorphism of G′(Qp)-modules

(A|G′(Qp))ϕ′ ≃
⊕
ϕ

ϕ′=g◦ϕ

Aϕ|G′(Qp),

with notation as in Corollary 4.3.

Proof. By applying Corollary 4.3, we obtain a decomposition

A ≃
⊕
ϕ

Aϕ

of A as a G(Qp)-module. We restrict to G′(Qp) and apply the localization map (−)ϕ′ . This gives
an isomorphism

(A|G′(Qp))ϕ′ ≃
⊕
ϕ

(Aϕ|G′(Qp))ϕ′ ,

where we have used that localization commutes with direct sums since it is a left adjoint by definition.
Now, using the compatibility of the Fargues-Scholze correspondence with central isogenies [FS21,
Theorem IX.6.1], either ϕ′ = g ◦ ϕ and Aϕ|G′(Qp) ∈ D(G′(Qp),Fℓ)ϕ′ and, by the idempotence of the
localization map, we have that (Aϕ|G′(Qp))ϕ′ = Aϕ|G′(Qp) or (Aϕ|G′(Qp))ϕ′ is 0. The claim follows. □
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By the previous lemma applied to Gder = G′ ⊂ G, we have a natural decomposition

H i(Sh(G, X)Kp ,Fℓ)ϕ′ ≃
⊕
ϕ

ϕ′=g◦ϕ

H i(Sh(G, X)Kp ,Fℓ)ϕ.

Taking limits over Kp, we obtain

H i(Sh(G, X),Fℓ)ϕ′ ≃
⊕
ϕ

ϕ′=g◦ϕ

H i(Sh(G, X),Fℓ)ϕ.

Hence, we see that H i(Sh(G, X),Fℓ)ϕ′ vanishes for i < d, since all the ϕ appearing on the right-hand
side are generic, and hence we can apply Theorem 1.16 and take limits to see that all the direct
summands vanish. Applying RΓ(Kp,−) and Lemma 4.2 (3), we see that

H i(Sh(G, X)Kp ,Fℓ)m′

vanishes for i < d. Thus, we see that H i(Sh+(G, X)Kp ,Fℓ)m′ vanishes for i < d, and therefore
the same is true for H i(Sh(G2, X2)K2,p ,Fℓ)m′ from the discussion above. By the Hochschild-Serre
spectral sequence, we see that for all sufficiently small Kp

2 , H i
c(Sh(G2, X2)K2,pK

p
2
,Fℓ)m′ vanishes for

i < d.
Now, consider a generic maximal ideal m2 for the spherical Hecke algebra HK2,p of G2. This

corresponds to a generic maximal ideal m′ of H ′K′p . It remains to observe that for any finitely-
generated HK2,p-module A, if the localization Am′ = 0, then there is some element in r ∈ H ′K′p\m

′

such that rA = 0. Thus we must have Am2 = 0 as well since H ′K′p\m
′ ⊂ HK2,p\m2. □

As a corollary, we can strengthen previous results of Caraiani-Tamiozzo [CT21, Theorem B], who
previously showed torsion vanishing for Hilbert modular varieties under the additional assumption
that p was split in the totally real field F (though we also note that they showed torsion vanishing
under a hypothesis on m which is weaker than the genericity considered here, see Remark 1.7).

Corollary 5.3. Conjecture 1.2 is true for Hilbert-Siegel Shimura varieties (attached to ResF/QGL2,
ResF/QGSp4) and quaternionic Shimura varieties.

Proof. Observe that for Hilbert-Siegel Shimura varieties (attached to ResF/QGL2, ResF/QGSp4),
there is a cover by a PEL-type Shimura variety with local group G of the form G(SL2) and G(Sp4)
respectively. For the case of quaternionic Shimura varieties, we can relate their geometric connected
components to unitary PEL-type Shimura varieties with local group GU2, as described in [TX16,
Corollary 3.11]. Therefore, the result follows from Theorem 1.16. □

6. Conjectures and Concluding Remarks

6.1. Relationship to Xiao-Zhu. Assume that the basic element b ∈ B(G,µ)un is unramified
(See [XZ17, Remark 4.2.11] for a classification). Let us look at the middle degree cohomology
Hd(RΓc(S(G, X)Kp,C ,Fℓ)ϕm). By Theorem 1.14, it has a summand isomorphic to

Hd(RΓc(G, b, µ)⊗L
H(Jb)

RΓc−∂(Ig
b,Fℓ)).

To describe this, let G′ be the unique Q-inner form of G such that G(Ap∞) ≃ G′(Ap∞), G′(R)
is compact modulo center, and GQp ≃ Jb (See [Han20, Proposition 3.1] for the existence).
We write C(G′(Q)\G′(Af )/Kp,Fℓ) for the set of all continuous functions on the profinite set
G′(Q)\G′(Af )/Kp. It is easy to show that one has an isomorphism

C(Kp\G′(Af )/G′(Q),Fℓ) ≃ RΓc−∂(Igb,Fℓ)
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for example by combining [Han20, Theorem 3.4] and Corollary 3.6. We let Vµ ∈ RepFℓ
(Ĝ) be the

usual highest weight module of highest weight µ, which in particular agrees with the highest weight
tilting module, since µ is minuscule. We let bT denote the unique (since b is basic) reduction of
b ∈ B(G) to B(T ), and regard it as an element in B(T ) ≃ X∗(T̂Γ) in what follows. It should be
the case that, under possible additional constraints on m depending on µ (See for example [Ham22,
Conjecture 1.25] and [XZ17, Definition 1.4.2]), we have an isomorphism
(23)

C(Kp\G′(Af )/G′(Q),Fℓ)⊗LRΓc(Sht(G, b, µ)∞,C/K
hs
p ,Fℓ)m ≃ C(Kp\G′(Af )/G′(Q),Fℓ)m⊗Vµ|ĜΓ(bT )[−d](−

d

2
)

of G(Qp)-representations8, where we note that Jb ≃ G if b ∈ B(G,µ)un since b is basic, and Jb
must be quasi-split since b is unramified. In particular, by arguing as in Koshikawa [Kos21, Page 6],
we know that RΓc(Sht(G, b, µ)∞,C/Khs

p ,Fℓ)m will have irreducible constituents given by the repre-
sentations of Jb(Qp) with Fargues-Scholze parameter equal ϕm as conjugacy classes of parameters.
Moreover, using that Assumption 4.4 holds for the groups appearing in Table (1), we know by
Propsoition 4.5 that they have to be constituents of iGB(χ), which will also be irreducible under the
generic assumption and the constraints appearing in Table (1) (See the proof of Corollary 4.24).
Then [Ham22, Conjecture 1.25] would imply that RΓc(G, b, µ)[iGB(χ)] ≃ iGB(χ)⊗Vµ|ĜΓ(bT )[−d](−d2 )

as G(Qp)-modules. Assume ℓ is banal (i.e coprime to the pro-order of Khs
p ) then passing to Khs

p -
invariants, recalling that it is exact under the banal hypothesis, gives us the isomorphism (23).9

Remark 6.1. If B(G,µ)un consists of only the basic element and the µ-ordinary element and ϕT is
strongly µ-regular (Definition 4.13) then [Ham22, Conjecture 1.25] is true. In particular, it follows
from [Ham22, Theorem 1.27] that the isomorphism (23) can be made unconditional.

We note that this description of the middle degree cohomology on the generic fiber of the Shimura
variety at hyperspecial level parallels Theorem [XZ17, Theorem 1.14 (1)], describing the middle
degree cohomology on the special fiber of the natural integral model.

6.2. A General Torsion Vanishing Conjecture. Consider now a general Shimura datum
(G, X). Let Λ ∈ {Qℓ,Fℓ}. If Λ = Fℓ assume that ℓ is very good with respect to G := GQp ,
as in [FS21, Page 33]. We can then look at the G(Qp)×WEp-representation.

RΓc(S(G, X)Kp,C ,Λ)

defined by the cohomology at infinite level. By applying Corollary 4.3, we obtain a G(Qp)×WEp-
equivariant decomposition of this

RΓc(S(G, X)Kp,C ,Λ) =
⊕
ϕ

RΓc(S(G, X)Kp,C ,Λ)ϕ

running over semi-simple L-parameters ϕ : WQp → LG(Λ). For such a ϕ, we let (ϕM ,M) denote a
cuspidal support. I.e M is a Levi of G and ϕM : WQp → LM(Λ) is a supercuspidal L-parameter
such that ϕ is induced by composing with the natural embedding LM(Λ) → LG(Λ). We want to
describe the degrees of cohomology that RΓc(S(G, X)Kp,C ,Λ)ϕ sits in for suitably nice ϕ. The
case where ϕ factors through M = T is covered by Conjecture 1.2. To go beyond this, we give the
following definition.

8One should also be able describe the Weil group action, as in [Ham22, Conjecture 1.25].
9For this comparison, it would have been more natural to consider an analogue of Theorem 1.14 with Qℓ-coefficients.

This is indeed doable assuming that ϕm admits a Zℓ-lattice as in [Ham22, Theorem 1.17]. This integrality condition
is however an artifiact of the theory of solid Qℓ-sheaves not being properly understood (e.g excision fails) and should
be removable with more technology.
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Definition 6.2. For a semi-simple L-parameter ϕ with a cuspidal support (M,ϕM ), we let P be
a parabolic with Levi factor M and unipotent radical N . We consider the representation r given
by looking at the action of LM on the Lie algebra of LN via the adjoint action. We say ϕ is of
Langlands-Shahidi type if the Galois cohomology groups

RΓ(WQp , r ◦ ϕM )

and
RΓ(WQp , r ◦ ϕ∨M )

are trivial. Similarly, we say ϕ is of weakly Langlands-Shahidi type if

H2(RΓ(WQp , r ◦ ϕM ))

and
H2(RΓ(WQp , r ◦ ϕ∨M )

are trivial.

Remark 6.3. We note that since we enforced this condition on both r ◦ ϕM and r ◦ ϕ∨M that this is
independent of the choice of parabolic P and the choice of cuspidal support. Moreover, it is easy
to check that, if M = T , this precisely recovers Definition 1.1.

The terminology of "Langlands-Shahidi type" comes from the fact that the representation r ◦ϕM
is precisely the representation which appears in the description of the constant term of the usual
Eisenstein series via the Langlands-Shahidi method. The motivation for this definition comes from
considering the behavior of geometric Eisenstein series over the Fargues-Fontaine curve for general
parabolics, by making analogies with the classical theory over function fields, as developed in [BG02;
Lau90]. In particular, this should be the correct definition that guarantees that the eigensheaves
Sϕ on BunG with eigenvalue ϕ are as simple as possible, and the analysis carried out in [Ham22]
generalizes to the non-principal case. This is discussed in more detail in [Ham23, Chapter 3]. In
addition, we expect that the consequences derived from the analysis in [Ham22] in the principal
case should also generalize. More precisely, we conjecture the following generalization of Proposition
4.15 and Corollary 4.24

Conjecture 6.4. Let B(G)M := Im(B(M)basic → B(G)) be the set of M -reducible elements, and
let ϕ be a semi-simple L-parameter of Langlands-Shahidi type with cuspidal support (M,ϕM ). The
category Dlis(BunG,Λ)ϕ of ϕ-local lisse-étale Λ-sheaves (as defined in Appendix A) breaks up as
direct sum

Dlis(BunG,Λ)ϕ ≃
⊕

b∈B(G)M

D(BunbG,Λ)ϕ

via excision, and the ! and ∗ pushhforwards agree for any smooth irreducible representation ρ of
Jb(Qp) lying in Dlis(Bun

b
G,Λ)ϕ for b ∈ B(G)M .

Given a tilting module V ∈ TiltΛ(
LGI), if ϕ is of weakly Langlands-Shahidi type then the

map induced by associated the Hecke operator

TV : Dlis(BunG,Λ)ϕ → Dlis(BunG,Λ)
BW I

Qp

ϕ

is perverse t-exact, where the fact the Hecke operator preserves this subcategory is proven as in
Lemma 4.2 (2).

Remark 6.5. During the preparation of this manuscript, Hansen formulated similar conjectures
with rational coefficients [Han23]. He refers to Langlands-Shahidi parameters as generous param-
eters [Han23, Definition 2.5] and to weakly Langlands-Shahidi parameters as generic semi-simple
parameters [Han23, Section 2.3]. One can show that these two definitions are equivalent. Indeed,
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note that the Galois cohomology H1(RΓ(WQp , r ◦ ϕM )) controls the lifts of a semi-simple param-
eter ϕM : WQp → LM(Λ) to a LP (Λ)-valued parameter and that such lifts correspond to finding
parameters whose semi-simplification is equal to ϕ. Moreover, insisting that H1(RΓ(WQp , r ◦ ϕM ))
is trivial is equivalent to insisting that RΓ(WQp , r ◦ ϕM ) is trivial using local Tate-duality and
that the Euler-Poincaré characteristic of this complex is 0. This shows the equivalence of the
generous condition with the Langlands-Shahidi type condition, using that the stack of Langlands
parameters with rational coefficients is reduced. Lastly, the set of such lifts coming from classes in
H0(RΓ(WQp , r ◦ ϕM )) will give rise to non Frobenius semi-simple L-parameters allowing one to see
that weakly Langlands-Shahidi is equivalent to generic semi-simple.

In particular, by combining this with a generalization of Theorem 1.12 to arbitrary Shimura
varieties and the analysis carried out in §5, we could deduce the following as a consequence.

Conjecture 6.6. Let ϕ be a semi-simple L-parameter of weakly Langlands-Shahidi type with cus-
pidal support (M,ϕM ). Then the complex RΓc(S(G, X)Kp,C ,Λ)ϕ (resp. RΓ(S(G, X)Kp,C ,Λ)ϕ) is
concentrated in degrees 0 ≤ i ≤ d (resp. d ≤ i ≤ 2d).

Remark 6.7. For (G, X) of PEL type A or C, assuming 1.10 and that ϕ of Langlands-Shahidi type,
we should also obtain a WEp ×G(Qp)-equivariant direct sum decomposition

RΓc(S(G, X)Kp,C ,Λ)ϕ ≃
⊕

b∈B(G,µ)M

(RΓc(G, b, µ)ϕ ⊗L Vb)[2db],

where RΓc(G, b, µ) := colimKp→{1}RΓc(Sht(G, b, µ)∞,C/Kp,Λ(db)) and RΓc(G, b, µ)ϕ is the pro-
jection applied to the complex viewed as a G(Qp)-representation. This should also generalize
once one has appropriate general definitions of Igb and Igb,∗ so that one can actually define
Vb := RΓc−∂(Ig

b,Λ). Under possible additional constraints on ϕ, one should also be able to de-
scribe the contribution of RΓc(G, b, µ)ϕ in terms of the decomposition Vµ|Z(M̂Γ) = Tµ|Z(M̂Γ) for
b ∈ B(G)M (along the lines of [Ham22, Conjecture 1.25]), as is explained in the toral case in §6.1.
It would be interesting to formulate an optimal conjecture.

Remark 6.8. We believe that this conjecture should be true under just the weakly Langlands-Shahidi
condition. However, we strongly suspect that the splitting of the semi-orthogonal decomposition
and in turn the splitting of Mantovan’s filtration discussed in the previous Remark should not hold
unless the set B(G,µ)M is a singleton. In particular, in [Han23, Section 2.2] Hansen conjectures
the existence of perverse sheaves lying Dlis(BunG,Λ)ϕ, for which the semi-orthogonal decomposition
does not split. Nonetheless, one still expects perverse t-exactness of Hecke operators to hold in these
cases [Han23, Conjecture 2.32].

Appendix A. Spectral Decomposition of Sheaves on BunG, by David Hansen

Let G/Qp be a connected reductive group, Λ/Zℓ an algebraically closed field. If char(Λ) ̸= 0 we
assume ℓ is very good for G.

Set D(BunG) = Dlis(BunG,Λ) to be the derived category of lisse-étale Λ-sheaves, regarded as a
stable ∞-category whenever convenient. Let XĜ = Z1(WE , Ĝ)Λ/Ĝ be the stack of L-parameters
over Λ, and let XĜ be its coarse moduli space, q : XĜ → XĜ the natural map. We will regard XĜ
as a disjoint union of finite type algebraic stacks over Λ, and XĜ as a disjoint union of finite type
affine Λ-schemes. As in [FS21], we have the spectral action of Perf(XĜ) on D(BunG), and there
is a natural map ΨG : O(XĜ) = O(XĜ) → Z(D(BunG)) := π0(idD(BunG)), where we recall that
Z1(WE , Ĝ)Λ is a disjoint union of affine schemes by [FS21, Theorem VIII.1.3]. These two structures
are compatible (as proven by Zou [Zou22, Theorem 5.2.1]).
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By [FS21, Prop. VIII.3.8], the set of closed points XĜ(Λ) is naturally in bijection with the set
of isomorphism classes of semisimple L-parameters ϕ : WE → LG(Λ). Let mϕ ⊂ O(XĜ) be the
maximal ideal associated with a given ϕ.

Definition A.1. Given any ϕ as above, D(BunG)ϕ ⊂ D(BunG) is the full subcategory of sheaves

A ∈ D(BunG) such that for every f ∈ O(XĜ) ∖ mϕ, A
·f→ A is an isomorphism. Here ·f is the

endomorphism of A induced by ΨG.

We will call objects of D(BunG)ϕ ϕ-local sheaves.

By construction, D(BunG)ϕ is a full subcategory of D(BunG) stable under arbitrary limits
and colimits, and the tautological inclusion functor ιϕ : D(BunG)ϕ ↪→ D(BunG) commutes with
limits and colimits. By the ∞-categorical adjoint functor theorem [Lur09, Cor. 5.5.2.9.(2)], it
therefore admits a left adjoint Lϕ : D(BunG) → D(BunG)ϕ.10 The unit of the adjunction gives a
map A → ιϕLϕA =: Aϕ functorially in A. Since ιϕ is fully faithful, Lϕιϕ = id, so (Aϕ)ϕ = Aϕ, i.e.
the endofunctor A ⇝ Aϕ is idempotent. We remark that D(BunG)ϕ is a Bousfield localization of
D(BunG), and the map A→ Aϕ is the initial map from A to a ϕ-local sheaf.

Proposition A.2. The full subcategory D(BunG)ϕ is preserved by the spectral action, and A⇝ Aϕ
commutes with the spectral action. Moreover, supp(Aϕ) ⊆ supp(A).

Proof. The first claim is clear, since the spectral action commutes with the action of O(XĜ). For the
remaining claims (and some later arguments), it is useful to give an explicit formula for Aϕ. Let Iϕ be
the diagram category whose objects are elements of O(XĜ)∖mϕ and where a morphism f → g is an
element h ∈ O(XĜ) ∖ mϕ such that g = fh. This is clearly cofiltered. Let F ∈ Fun(Iϕ,D(BunG))
be the functor sending f to A and sending a morphism h ∈ Mor(f, g) to ·h ∈ End(A). Then
Aϕ = colimi∈IϕF (i). The remaining claims are now immediate. □

To make sense of the next proposition, note that for any A,B ∈ D(BunG), Hom(B,A) is naturally
a Z(D(BunG))-module, whence a O(XĜ)-module.

Proposition A.3. If C ∈ D(BunG) is compact, then Hom(C,Aϕ) ∼= Hom(C,A)mϕ
functorially in

A and C, where the RHS is the usual localization as an O(XĜ)-module.

Proof. Notation as in the previous proof, we have

Hom(C,Aϕ) ∼= Hom(C, colimi∈IϕF (i))

∼= colimi∈IϕHom(C,F (i))

∼= Hom(C,A)mϕ

where the second isomorphism follows from the compactness of C and the third isomorphism is
immediate from the definition of (−)mϕ

. □

Proposition A.4. If A is ULA, then also Aϕ is ULA.

Proof. Recall from [FS21, Prop. VII.7.9] that B ∈ D(BunG) is ULA iff RHom(C,B) ∈ Perf(Λ)
is a perfect complex for all compact objects C ∈ D(BunG). Now, if C is compact, RHom(C,−)
commutes with filtered colimits, so

RHom(C,Aϕ) ≃ RHom(C, colimi∈IϕF (i))

≃ colimi∈IϕRHom(C,F (i))

with notation as in the proof of Proposition A.2. Since F (i) ≃ A for all i, colimi∈IϕRHom(C,F (i)) is
a filtered colimit of perfect complexes Pi which vanish outside a finite interval independent of n, and

10To see that ιϕ is accessible, use [Lur09, Prop. 5.4.7.7] together with the fact that ιϕ admits a right adjoint,
which follows from [Lur09, Cor. 5.5.2.9.(1)].
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with dimΛ(H
j(Pi)) bounded independently of i. It then easily follows that colimi∈IϕRHom(C,F (i))

is perfect, whence the claim. □

Proposition A.5. If A is ULA, the natural maps A →
∏
ϕAϕ ← ⊕ϕAϕ are isomorphisms, where

the direct sum and direct product are taken over all semi-simple L-parameters. In particular, Aϕ is
functorially a direct summand of A for ULA sheaves A, and the functor (−)ϕ on ULA sheaves is
perverse t-exact.

Remark A.6. The isomorphism ⊕ϕAϕ
∼→

∏
ϕAϕ may be surprising at first glance. To put this in

context, we remind the reader that if (πi)i∈I is a collection of admissible smooth Λ[G(Qp)]-modules
whose product

∏
i πi is admissible, then ⊕iπi

∼→
∏
i πi automatically, because admissibility of

∏
i πi

implies that for any given compact open subgroup K ⊂ G(Qp) we have πKi = 0 for all but finitely
many i. A similar argument occurs in the following proof, which actually shows that if (Ai)i∈I is any
collection of ULA sheaves on BunG whose product

∏
iAi is ULA, then ⊕iAi

∼→
∏
iAi automatically.

Proof. We first show that A→
∏
ϕAϕ is an isomorphism. Let C be any compact object. It suffices

to prove that the natural map

Hom(C,A)→
∏
ϕ

Hom(C,Aϕ) ∼= Hom(C,
∏
ϕ

Aϕ)

is an isomorphism, since D(BunG) is compactly generated [FS21, Theorem I.5.1 (iii)]. As in the
previous proof, RHom(C,A) is a perfect complex, so Hom(C,A) is a finite Λ-vector space. In
particular, it is a finite length O(XĜ)-module supported at a finite set of closed points S ⊂ XĜ(Λ),
so if ϕ /∈ S then Hom(C,Aϕ) = Hom(C,A)mϕ

= 0 using Proposition A.3. We then conclude that

Hom(C,A) = ⊕ϕ∈SHom(C,A)mϕ

= ⊕ϕ∈SHom(C,Aϕ)

=
∏
ϕ

Hom(C,Aϕ)

where the first equality follows from general nonsense about finite length modules over commutative
rings, the second equality follows from Proposition A.3, and the third equality follows from the
vanishing of Hom(C,Aϕ) for all but finitely many ϕ. This also shows that Hom(C,⊕ϕAϕ) ∼=
⊕ϕHom(C,Aϕ) →

∏
ϕHom(C,Aϕ) is an isomorphism (here again the first isomorphism follows

from compactness of C), which implies that ⊕ϕAϕ
∼→

∏
ϕAϕ is an isomorphism. □

Next, recall the Verdier duality functor DBunG on D(BunG), which induces an involutive anti-
equivalence on the subcategory of ULA sheaves. Recall also that, for any A, the diagram

O(XĜ)
ΨG //

f 7→f∨
��

End(A)

��
O(XĜ)

ΨG // End(DBunG(A))

commutes, where f 7→ f∨ is the involution of O(XĜ) induced by composition with the Chevalley
involution at the level of L-parameters. Since f ∈ mϕ iff f∨ ∈ mϕ∨ , we deduce that if A is ϕ-local
then DBunG(A) is ϕ∨-local. Using biduality, we also get that if A is ULA then A is ϕ-local if and
only if DBunG(A) is ϕ∨-local.

Corollary A.7. If A is ULA, then DBunG(Aϕ)
∼= (DBunG(A))ϕ∨ .
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Proof. By Proposition A.5 and the remarks preceding its proof, the decomposition A = ⊕ψAψ
dualizes to a decomposition

DBunG(A) =
∏
ψ

DBunG(Aψ)
∼= ⊕ψDBunG(Aψ)

where the second isomorphism follows from the discussion in Remark A.6. On the other hand,
applying Proposition A.5 directly to DBunG(A) gives a decomposition

DBunG(A)
∼= ⊕ψ′(DBunG(A))ψ′ ,

so comparing these we get a natural isomorphism

⊕ψDBunG(Aψ)
∼= ⊕ψ′(DBunG(A))ψ′ .

Applying (−)ϕ∨ to both sides, we get DBunG(Aϕ) on the left side (using that DBunG(Aϕ) is ϕ∨-local),
and (DBunG(A))ϕ∨ on the right side. This gives the claim. □
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